Light-industry-up.ru

Экосистема промышленности

Метод подвижных клеточных автоматов

17-10-2023

Метод подвижных клеточных автоматов

Подвижные клеточные автоматы активно меняют своих соседей за счет разрыва существующих связей между автоматами и образования новых связей (моделирование контактного взаимодействия)
Тип метода
Континуальный/Дискретный

Дискретный

Аналитический/Численный

Численный

Характеристики
Испытал влияние

Клеточный автомат, Метод дискретного элемента

Это метод

вычислительной механики

Метод подвижных клеточных автоматов (MCA, от англ. movable cellular automata) — это метод вычислительной механики деформируемого твердого тела, основанный на дискретном подходе. Он объединяет преимущества метода классических клеточных автоматов и метода дискретных элементов. Важным преимуществом метода МСА является возможность моделирования разрушения материала, включая генерацию повреждений, распространение трещин, фрагментацию и перемешивание вещества. Моделирование именно этих процессов вызывает наибольшие трудности в методах механики сплошных сред (метод конечных элементов, метод конечных разностей и др.), что является причиной разработки новых концепций, например, таких как перидинамика. Известно, что метод дискретных элементов весьма эффективно описывает поведение гранулированных сред. Особенности расчета сил взаимодействия между подвижными клеточными автоматами позволяют описывать в рамках единого подхода поведение как гранулированных, так и сплошных сред. Так, при стремлении характерного размера автомата к нулю формализм метода MCA позволяет перейти к классическим соотношениям механики сплошной среды.

Содержание

Основные положения метода

Объект (слева) описывается в виде набора взаимодействующих автоматов (в центре). Справа представлено поле скоростей автоматов.

В рамках метода MCA объект моделирования описывается как набор взаимодействующих элементов/автоматов. Динамика множества автоматов определяется силами их взаимодействия и правилами для изменения их состояниия. Эволюция этой системы в пространстве и во времени определяется уравнениями движения. Силы взаимодействия и правила для связанных элементов определяются функциями отклика автомата. Эти функции задаются для каждого автомата. В течение движения автомата следующие новые параметры клеточного автомата рассчитываются: Ri — радиус-вектор автомата; Vi — скорость автомата; i — угловая скорость автомата; i — вектор поворота автомата; mi — масса автомата; Ji — момент инерции автомата.

Новая концепция — концепция соседей

Каждый автомат имеет несколько соседей

Новая концепция метода MCA основана на представлении состояния пары автоматов (связывает пару взаимодействующих автоматов) в дополнении к обычному состоянию отдельного автомата. Заметим что учет этого определения позволяет перейти от статической сеточной концепции к концепции соседей. В результате этого, автоматы имеют возможность менять своих соседей путем переключения состояния(зависимостей) пар.

Определение параметров состояния пары автоматов

Ввод нового типа состояния требует нового параметра используемого в качестве критерия переключения в состояние связанные. Это определяется как параметр перекрытия автоматов hij. И так, связь клеточных автоматов характеризуется величиной их перекрытия.

Начальная структура формируется установкой свойств особой связи между каждой парой соседних элементов.

Критерии переключения пары автоматов в состояние связанные

Пара автоматов ij слева находятся в связанном состоянии, справа — в несвязанном.

По сравнению с методом классических клеточных автоматами в методе MCA не только единичный автомат но и также связи автоматов могут переключаться. В соответствии с концепцией бистабильных автоматов вводится два состояния пары (взаимосвязь):

связанные оба автомата принадлежат одному сплошному телу
несвязанные каждый автомат принадлежит разным телам или фрагментам поврежденного материала

Итак, изменение состояния связи пары определяется относительным движением автоматов, и среда формируемая такими парами может быть названа бистабильной средой.

Уравнения движения MCA

Эволюция MCA среды описывается следующими уравнениями трансляционного движения:

Учет сил, действующих между автоматами ij со стороны их соседей.

Здесь mi это масса автомата i, pij это центральная сила действующая между автоматами i и j, C(ij, ik) это особый коэффициент ассоциированный с переносом параметра h из пары ij к ik, ψ(αij, ik) это угол между направлениями ij и ik.

Вращательные движения также могут быть учтены с точностью ограниченной размером клеточного автомата. Уравнения вращательного движения могут быть записаны следующим образом:

Здесь Θij угол относительного поворота (это параметр переключения подобно hij трансляционного движения), qij(ji) это расстояние от центра автомата i(j) до точки контакта с автоматом j(i) (угловой момент), τij это парное тангенциальное взаимодействие, S(ij, ik(jl)) это особый коэффициент ассоциированный с параметром переноса Θ от одной пары к другой (это похоже на C(ij, ik(jl)) из уравнений трансляционного движения).

Следует отметить, что уравнения полностью аналогичны уравнениям движения для много-частичной среды.

Определение деформации пары автоматов

Вращение тела как целого не приводит к деформации между автоматами

Смещение пары автоматов Безразмерный параметр деформации для смещения i j пары автоматов записывается как:

В этом случае:

\left( \Delta{\varepsilon^{i(j)}} + \Delta{\varepsilon^{j(i)}} \right)  
{ \left( d^{i} + d^{j} \right) \over 2} = V_{n}^{ij} \Delta{t}

где Δt временной шаг, Vnij — зависимая скорость. Вращение пары автоматов может быть посчитано аналогично с связью последнего смешения.

Описание необратимой деформации в методе MCA

Деформация определяется величиной перекрытия автоматов
Существует два типа функций отклика автоматов

Параметр εij используется как мера деформации автомата i взаимодействующего с автоматом j. Где qij — расстояние от центра автомата i до точки его контакта с автоматом j; Ri=di/2 (di — размер автомата i).

Например титановый образец при циклическом нагружении (растяжение-сжатие). Диаграмма деформирования показана на следующем рисунке:

схема нагружения Диаграмма деформирования
(Красные точки — экспериментальные данные)

Преимущества метода MCA

Благодаря подвижности каждого автомата метод MCA позволяет напрямую учитывать такие события как:

  • перемешивание масс
  • эффект проникновения
  • химические реакции
  • интенсивные деформации
  • фазовые превращения
  • накопление повреждений
  • фрагментация и трещины
  • генерация и развитие повреждений

Используя различные граничные условия разных типов (жесткие, упругие, вязко-упругие, т.д.) можно имитировать различные свойства окружающей среды, содержащей моделируемую систему. Можно моделировать различные режимы механического нагружения (растяжение, сжатие, сдвиг, т.д.) с помощью настроек дополнительных состояний на границах.

Литература

  • Psakhie, S.G.; Horie, Y.; Korostelev, S.Yu.; Smolin, A.Yu.; Dmitriev, A.I.; Shilko, E.V.; Alekseev, S.V. (1995). «Method of movable cellular automata as a tool for simulation within the framework of mesomechanics». Russian Physics Journal (Springer New York) 38 (11). 10.1007/BF00559396.
  • Псахье, С.Г.; Коростелев, С.Ю.; Смолин, А.Ю.; Дмитриев, А.И.; Шилько, Е.В.; Моисеенко, Д.Д.; Татаринцев, Е.М.; Алексеев, С.В. (1998). «Метод подвижных клеточных автоматов как инструмент физической мезомеханики материалов». Физическая мезомеханика (Учреждение Российской академии наук Институт физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН)) 1 (1). Проверено 2010-03-03.
  • Псахье, С.Г.; Остермайер, Г.П.; Дмитриев, А.И.; Шилько, Е.В.; Смолин, А.Ю.; Коростелев, С.Ю. (2000). «Метод подвижных клеточных автоматов как новое направление дискретной вычислительной механики. I. Теоретическое описание». Физическая мезомеханика (Учреждение Российской академии наук Институт физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН)) 3 (2). Проверено 2010-03-03.
  • Psakhie, S.G.; Horie, Y.; Ostermeyer, G.P.; Korostelev, S.Yu.; Smolin, A.Yu.; Shilko, E.V.; Dmitriev, A.I.; Blatnik, S.; Spegel, M.; Zavsek, S. (December 2001). «Movable cellular automata method for simulating materials with mesostructure». Theoretical and Applied Fracture Mechanics (Elsevier Science Ltd.) 37 (1-3). 10.1016/S0167-8442(01)00079-9.
  • Псахье, С.Г.; Смолин, А.Ю.; Стефанов, Ю.П.; Макаров, П.В.; Чертов, М.А. (2004). «Моделирование поведения сложных сред на основе совместного использования дискретного и континуального подходов». Письма в ЖТФ 30 (17). Проверено 2010-03-03.
  • Shimizu Y. Numerical modeling in Micromechanics via Particle Methods. — 2004. — ISBN 9058096793
  • Gnecco E. Fundamentals of friction and wear on the Nanoscale. — 2007. — ISBN 9783540368069
  • Yunliang, Tan; Guirong, Teng; Haitao, Li. «MCA Model for Simulating the Failure of Microinhomogeneous Materials». Journal of Nanomaterials (Hindawi Publishing Corporation) 2008. 10.1155/2008/946038. 946038.
  • Фомин В.М. Механика - от дискретного к сплошному. — Рос. акад наук, Сиб. отд-ние, Ин-т теоретической и прикладной механики им. С.А. Христиановича, 2008. — P. 344. — ISBN 978-5-7692-0974-1
  • Смолин, А.Ю.; Роман, Н.В.; Добрынин, С.А.; Псахье, С.Г. (2009). «О вращательном движении в методе подвижных клеточных автоматов». Физическая мезомеханика (Учреждение Российской академии наук Институт физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН)) 12 (2). Проверено 2010-03-03.
  • Popov Valentin L. Kontaktmechanik und Reibung (Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation). — Springer Berlin Heidelberg, 2009. — 10.1007/978-3-540-88837-6.
  • Добрынин С.А. Развитие метода подвижных клеточных автоматов для моделирования генерации и распространения упругих волн при контактном взаимодействии твердых тел. — Томск: Диссертация … кандидата физико-математических наук, 2010. — P. 130.

Программное обеспечение

  • MCA software package

См. также

Метод подвижных клеточных автоматов.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06