Light-industry-up.ru

Экосистема промышленности

Показатель адиабаты

25-05-2023

Термодинамика
Статья является частью одноименной серии.
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»

Показатель адиабаты (иногда называемый коэффициентом Пуассона) — отношение теплоёмкости при постоянном давлении () к теплоёмкости при постоянном объёме (). Иногда его ещё называют фактором изоэнтропийного расширения. Обозначается греческой буквой (гамма) или (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква [1].

Уравнение:

,

где

 — теплоёмкость газа,
 — удельная теплоёмкость (отношение теплоёмкости к единице массы) газа,
индексы и обозначают условие постоянства давления или постоянства объёма, соответственно.

Для понимания этого соотношения можно рассмотреть следующий эксперимент:

Закрытый цилиндр с закреплённым неподвижно поршнем содержит воздух. Давление внутри равно давлению снаружи. Этот цилиндр нагревается до определённой, требуемой температуры. Пока поршень не может двигаться, объём воздуха в цилиндре остаётся неизменным, в то время как температура и давление возрастают. Когда требуемая температура будет достигнута, нагревание прекращается. В этот момент поршень «освобождается» и, благодаря этому, начинает двигаться наружу без теплообмена с окружающей средой (воздух расширяется адиабатически). Совершая работу, воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздух к состоянию, когда его температура опять достигнет упомянутого выше требуемого значения (при всё ещё «освобождённом» поршне) воздух необходимо нагреть. Для этого нагревания извне необходимо подвести примерно на 40 % (для двухатомного газа — воздуха) большее количество теплоты, чем было подведено при предыдущем нагревании (с закреплённым поршнем). В этом примере количество теплоты, подведённое к цилиндру с закреплённом поршне, пропорционально , тогда как общее количество подведённой теплоты пропорционально . Таким образом, показатель адиабаты в этом примере равен 1.4.

Другой путь для понимания разницы между и состоит в том, что применяется тогда, когда работа совершается над системой, которую принуждают к изменению своего объёма (то есть путём движения поршня, который сжимает содержимое цилиндра), или если работа совершается системой с изменением её температуры (то есть нагреванием газа в цилиндре, что вынуждает поршень двигаться). применяется только если  — а это выражение обозначает совершённую газом работу — равно нулю. Рассмотрим разницу между подведением тепла при закреплённом поршне и подведением тепла при освобождённом поршне. Во втором случае давление газа в цилиндре остаётся постоянным, и газ будет как расширяться, совершая работу над атмосферой, так и увеличивать свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, лишь частично идёт на изменение внутренней энергии газа, в то время как остальное тепло идёт на совершение газом работы.

Показатели адиабаты для различных газов[2][3]
Темп. Газ γ   Темп. Газ γ   Темп. Газ γ
−181 °C H2 1.597 200 °C Сухой воздух 1.398 20 °C NO 1.400
−76 °C 1.453 400 °C 1.393 20 °C N2O 1.310
20 °C 1.410 1000 °C 1.365 −181 °C N2 1.470
100 °C 1.404 2000 °C 1.088 15 °C 1.404
400 °C 1.387 0°C CO2 1.310 20 °C Cl2 1.340
1000 °C 1.358 20 °C 1.300 −115 °C CH4 1.410
2000 °C 1.318 100 °C 1.281 −74 °C 1.350
20 °C He 1.660 400 °C 1.235 20 °C 1.320
20 °C H2O 1.330 1000 °C 1.195 15 °C NH3 1.310
100 °C 1.324 20 °C CO 1.400 19 °C Ne 1.640
200 °C 1.310 −181 °C O2 1.450 19 °C Xe 1.660
−180 °C Ar 1.760 −76 °C 1.415 19 °C Kr 1.680
20 °C 1.670 20 °C 1.400 15 °C SO2 1.290
0°C Сухой воздух 1.403 100 °C 1.399 360 °C Hg 1.670
20 °C 1.400 200 °C 1.397 15 °C C2H6 1.220
100 °C 1.401 400 °C 1.394 16 °C C3H8 1.130

Содержание

Соотношения для идеального газа

Для идеального газа теплоёмкость не зависит от температуры. Соответственно, можно выразить энтальпию как и внутренняя энергия может быть представлена как . Таким образом, можно также сказать, что показатель адиабаты — это отношение энтальпии к внутренней энергии:

С другой стороны, теплоёмкости могут быть выражены также через показатель адиабаты () и универсальную газовую постоянную ():

Может оказаться достаточно трудным найти информацию о табличных значениях , в то время как табличные значения приводятся чаще. В этом случае можно использовать следующую формулу для определения :

где  — количество вещества в молях.

Соотношения с использованием количества степеней свободы

Показатель адиабаты () для идеального газа может быть выражен через количество степеней свободы () молекул газа:

Таким образом, для одноатомного идеального газа (три степени свободы) показатель адиабаты равен:

,

в то время как для двуатомного идеального газа (пять степеней свободы) (при комнатной температуре):

.

Воздух на земле представляет собой в основном смесь двухатомных газов (~78 % азота (N2) и ~21 % кислорода (O2)) и, и при нормальных условиях его можно рассматривать как идеальный. Двухатомный газ имеет пять степеней свободы (три поступательных и две вращательных степени свободы; колебательная степень свободы не задействована, за исключением высоких температур). Как следствие показатель адиабаты для воздуха имеет величину:

.

Это хорошо согласуется с экспериментальными измерениями показателя адиабаты воздуха, которые приблизительно дают значение 1.403 (приведённое выше в таблице).

Соотношения для реальных газов

По мере того, как температура возрастает, более высокоэнергетические вращательные и колебательные состояния становятся достижимыми для молекулярных газов, и таким образом, количество степеней свободы возрастает, и уменьшается показатель адиабаты .

Для реальных газов, как , так и возрастают с увеличением температуры, при этом разность между ними остаётся неизменной (согласно приведённой выше формуле = ), и эта разность отражает постоянство величины P*V, то есть работы, совершаемой при расширении. Величина P*V представляет собой разницу между количествами подведённой теплоты при постоянном давлении и при постоянном объёме. Следовательно, отношение двух величин, , возрастает при увеличении температуры. См. также удельная теплоёмкость.

Термодинамические выражения

Значения, полученные с помощью приближённых соотношений (в частности, ), во многих случаях являются недостаточно точными для практических инженерных расчётов, таких как расчёты расходов через трубопроводы и клапана. Предпочтительнее использовать экспериментальные значения, чем те, которые получены с помощью приближённых формул. Строгие значения соотношения может быть вычислено путём определения из свойств, выраженных как:

Значения не составляет труда измерить, в то время как значения для необходимо определять из формул, подобных этой. См. здесь (англ.) для получения более подробной информации о соотношениях между теплоёмкостями.

Выше приведённые соотношения отражают подход, основанный на развитии строгих уравнений состояния. (таких как уравнение Пенга-Робинсона (англ.)), которые настолько хорошо согласуются с экспериментом, что для их применения требуется лишь незначительно развивать базу данных соотношений или значений . Значения могут быть также определены с помощью метода конечных разностей.

Адиабатический процесс

Для изоэнтропийного, квазистатического, обратимого адиабатного процесса, происходящего в простом сжимаемом идеальном газе:

где  — это давление и  — объём газа.

Экспериментальное определение величины показателя адиабаты

Подавляющее большинство высших учебных заведений до сих пор используют в процессе обучения для определения величины показателя адиабаты так называемый метод Клемана-Дезорма, впервые описанным автором в 1819 году.

Суть этого метода заключается в следующем.

Описание метода ниже соответствует методическому руководству для выполнения лабораторной работы, разработанному в Иркутском государственном университете в 1999 году[4]

Установка включает стеклянный баллон, соединенный с манометром, краном и резиновой грушей. Груша служит для нагнетания воздуха в баллон. Специальный зажим предотвращает утечку воздуха из баллона. Манометр измеряет разность давлений внутри и вне баллона. Кран может выпускать воздух из баллона в атмосферу.

Первоначально в баллоне поддерживается атмосферное давление и комнатная температура.

Лабораторная работа выполняется в два этапа:

1-ый этап:

При закрытом кране в баллон нагнетается небольшое количество воздуха и шланг перекрывается зажимом. При этом давление и температура в баллоне повысятся. Методическое руководство считает, что это адиабатный процесс.

Газ в баллоне остывает за счет теплообмена через стенки баллона и его давление уменьшается. Когда температура воздуха внутри баллона сравняется с температурой окружающего воздуха, снимаются показания манометра .

2-ой этап:

Из баллона, путём открывания крана, выпускается воздух до достижения им атмосферного давления. Руководство полагает, что это процесс адиабатного расширения. При этом понижается температура в баллоне.

Кран закрывается и давление в баллоне со временем начнет увеличиваться вследствие нагрева газа в баллоне за счет теплообмена через стенки баллона.

Когда температура воздуха внутри баллона сравнится с температурой окружающего воздуха, вновь снимаются показания манометра .

Утверждается, что приближенное решение соответствующих уравнений адиабаты и изохоры приводит к следующей расчетной формуле для показателя адиабаты

Расчёты показателя адиабаты по методу Клемана-Дезорма имеют тот недостаток, что "адиабатные" процессы в ходе проведения этого опыта не являются чисто адиабатными с точки зрения классических газовых законов Бойля-Мариотта, Гей-Люссака и Шарля. Классические газовые законы подразумевают, что масса газа в процессе проведения опыта всегда остаётся одной и той же. В случае нагнетания и выпускания воздуха (или другого газа) из баллона применять для расчётов классические газовые законы не совсем правильно.

См. также

Примечания

  1. Fox, R., A. McDonald, P. Pritchard: Introduction to Fluid Mechanics 6th ed. Wiley
  2. White, Frank M.: Fluid Mechanics 4th ed. McGraw Hill
  3. Lange’s Handbook of Chemistry, 10th ed. page 1524
  4. http://www.physdep.isu.ru/kosm/method/obsh/lab/2-8.pdf

Показатель адиабаты.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06