Light-industry-up.ru

Экосистема промышленности

Тензор Вейля

06-06-2023

Тензор кривизны Вейля это часть тензора кривизны Римана с нулевым следом. Другими словами, это тензор, удовлетворяющий всем свойствам симметрии тензора Римана с дополнительным условием что построенный по нему тензор Риччи равен нулю.

Назван в честь Германа Вейля.

Определение

Тензор Вейля можно получить из тензора кривизны, если вычесть из него определенные комбинации тензора Риччи и скалярной кривизны. Формула для тензора Вейля легче всего записывается через тензор Римана в форме тензора валентности (0,4):

где n — размерность многообразия, g — метрика, R — тензор Римана, Ric — тензор Риччи, s — скалярная кривизна, а h O k — так называемое произведение Кулкарни — Номидзу двух симметричных тензоров валентности (0,2):

В компонентах, тензор Вейля задается выражением:

где  — тензор Римана,  — тензор Риччи,  — скалярная кривизна и обозначает операцию антисимметрирования.

Свойства

  • Тензор Вейля может иметь нетривиальную форму только в пространствах с размерностью не меньше четырёх.В двумерном и трёхмерном пространствах тензоры Вейля тождественно равны нулю.
  • Тензор Вейля остается инвариантным при конформных преобразованиях метрики. То есть, если для данной метрики g ввести новую метрику при помощи некоторой функции , то (1,3)-валентный тензор Вейля не изменяется: . По этой причине тензор Вейля еще называют конформным тензором. Из этого свойства следует, что
    • для того, чтобы многообразие было конформно евклидовым, необходимо чтобы его тензор Вейля равнялся нулю.
    • Для размерностей ≥ 4 это условие оказывается также и достаточным.
    • Для пространств размерности 3 необходимым и достаточным условием конформной эвклидовости является равенство нулю тензора Коттона (англ.).

См. также

Тензор Вейля.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06