Light-industry-up.ru

Экосистема промышленности

Теоремы Гёделя о неполноте

17-10-2023

Теоре́ма Гёделя о неполноте́ и втора́я теоре́ма Гёделя[~ 1] — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.

Первая теорема утверждает, что если формальная арифметика непротиворечива, то в ней существует невыводимая и неопровержимая формула.

Вторая теорема утверждает, что если формальная арифметика непротиворечива, то в ней невыводима некоторая формула, содержательно утверждающая непротиворечивость этой арифметики.

Эти теоремы были доказаны Куртом Гёделем в 1930 году (опубликованы в 1931) и имеют непосредственное отношение ко второй проблеме из знаменитого списка Гильберта.

Содержание

Теорема Гёделя о неполноте

В первоначальной форме

В своей формулировке теоремы о неполноте Гёдель использовал понятие ω-непротиворечивой формальной системы — более сильное условие, чем просто непротиворечивость. Формальная система называется ω-непротиворечивой, если для всякой формулы A(x) этой системы невозможно одновременно вывести формулы А(0), А(1), А(2), ... и ∃x ¬A(x) (другими словами, из того, что для каждого натурального числа n выводима формула A(n), следует невыводимость формулы ∃x ¬A(x)). Легко показать, что ω-непротиворечивость влечет простую непротиворечивость (то есть, любая ω-непротиворечивая формальная система непротиворечива)[6].

В процессе доказательства теоремы строится такая формула A арифметической формальной системы S, что[6]:

Если формальная система S непротиворечива, то формула A невыводима в S; если система S ω-непротиворечива, то формула ¬A невыводима в S. Таким образом, если система S ω-непротиворечива, то она неполна[~ 2] и A служит примером неразрешимой формулы.

Формулу A иногда называют гёделевой неразрешимой формулой[7].

Интерпретация неразрешимой формулы

В стандартной интерпретации[~ 3] формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в S. Следовательно, по теореме Гёделя, если только система S непротиворечива, то эта формула и в самом деле невыводима в S и потому истинна в стандартной интерпретации. Таким образом, для натуральных чисел формула A верна, но в S невыводима[8].

В форме Россера

В процессе доказательства теоремы строится такая формула B арифметической формальной системы S, что[9]:

Если формальная система S непротиворечива, то в ней невыводимы обе формулы B и ¬B; иначе говоря, если система S непротиворечива, то она неполна[~ 2], и B служит примером неразрешимой формулы.

Формулу B иногда называют россеровой неразрешимой формулой[10]. Эта формула немного сложнее гёделевой.

Интерпретация неразрешимой формулы

В стандартной интерпретации[~ 3] формула B означает «если существует вывод формулы B, то существует вывод формулы ¬B». Согласно же теореме Гёделя в форме Россера, если формальная система S непротиворечива, то формула B в ней невыводима; поэтому, если система S непротиворечива, то формула B верна в стандартной интерпретации[11].

Обобщенные формулировки

Доказательство теоремы Гёделя обычно проводят для конкретной формальной системы (не обязательно одной и той же), соответственно утверждение теоремы оказывается доказанным только для одной этой системы. Исследование достаточных условий, которым должна удовлетворять формальная система для того, чтобы можно было провести доказательство её неполноты, приводит к обобщениям теоремы на широкий класс формальных систем. Пример обобщенной формулировки[12]:

Всякая достаточно сильная рекурсивно аксиоматизируемая непротиворечивая теория первого порядка неполна.

В частности, теорема Гёделя справедлива для каждого непротиворечивого конечно аксиоматизируемого расширения арифметической формальной системы S.

Полиномиальная форма

После того, как Юрий Матиясевич доказал диофантовость любого эффективно перечислимого множества, и были найдены примеры универсальных диофантовых уравнений, появилась возможность сформулировать теорему о неполноте в полиномиальной (или диофантовой) форме[13][14][15][16]:

Для каждой непротиворечивой теории T можно указать такое целое значение параметра K, что уравнение
\begin{align}&(elg^2 + \alpha - bq^2)^2 + (q - b^{5^{60}})^2 + (\lambda + q^4 - 1 - \lambda b^5)^2 + \\
&(\theta + 2z - b^5)^2 + (u + t \theta - l)^2 + (y + m \theta - e)^2 + (n - q^{16})^2 + \\
&((g + eq^3 + lq^5 + (2(e - z \lambda)(1 + g)^4 + \lambda b^5 + \lambda b^5 q^4)q^4)(n^2 - n) + \\
&(q^3 - bl + l + \theta \lambda q^3 + (b^5-2)q^5)(n^2 - 1) - r)^2 + \\
&(p - 2w s^2 r^2 n^2)^2 + (p^2 k^2 - k^2 + 1 - \tau^2)^2 + \\
&(4(c - ksn^2)^2 + \eta - k^2)^2 + (r + 1 + hp - h - k)^2 + \\
&(a - (wn^2 + 1)rsn^2)^2 + (2r + 1 + \phi - c)^2 + \\
&(bw + ca - 2c + 4\alpha \gamma - 5\gamma - d)^2 + \\
&((a^2 - 1)c^2 + 1 - d^2)^2 + ((a^2 - 1)i^2c^4 + 1 - f^2)^2 + \\
&(((a + f^2(d^2 - a))^2 - 1) (2r + 1 + jc)^2 + 1 - (d + of)^2)^2 + \\
&(((z+u+y)^2+u)^2 + y-K)^2 = 0
\end{align}
не имеет решений в неотрицательных целых числах, но этот факт не может быть доказан в теории T. Более того, для каждой непротиворечивой теории множество значений параметра K, обладающих таким свойством, бесконечно и алгоритмически неперечислимо.

Степень данного уравнения может быть понижена до 4 ценой увеличения количества переменных.

Набросок доказательства

В своей статье Гёдель дает набросок основных идей доказательства[17], который приведен ниже с незначительными изменениями.

Каждому примитивному символу, выражению и последовательности выражений некоторой формальной системы[~ 4] S поставим в соответствие определенное натуральное число[~ 5]. Математические понятия и утверждения таким образом становятся понятиями и утверждениями о натуральных числах, и, следовательно, сами могут быть выражены в символизме системы S. Можно показать, в частности, что понятия "формула", "вывод", "выводимая формула" определимы внутри системы S, то есть можно восстановить, например, формулу F(v) в S с одной свободной натурально-числовой переменной v такую, что F(v), в интуитивной интерпретации, означает: v - выводимая формула. Теперь построим неразрешимое предложение системы S, то есть предложение A, для которого ни A, ни не-A невыводимы, следующим образом:

Формулу в S с точно одной свободной натурально-числовой переменной назовем класс-выражением. Упорядочим класс-выражения в последовательность каким-либо образом, обозначим n-е через R(n), и заметим, что понятие "класс-выражение", также как и отношение упорядочения R можно определить в системе S. Пусть α - произвольное класс-выражение; через [α;n] обозначим формулу, которая образуется из класс-выражения α заменой свободной переменной на символ натурального числа n. Тернарное отношение x = [y;z] тоже оказывается определимым в S. Теперь определим класс K натуральных чисел следующим образом:

nK ≡ ¬Bew[R(n);n]    (*)

(где Bew x означает: x - выводимая формула[~ 6]). Так как все определяющие понятия из этого определения можно выразить в S, то это же верно и для понятия K, которое из них построено, то есть имеется такое класс-выражение C, что формула [C;n], интуитивно интерпретируемая, обозначает, что натуральное число n принадлежит K. Как класс-выражение, C идентично некоторому определенному R(q) в нашей нумерации, то есть

C = R(q)

выполняется для некоторого определенного натурального числа q. Теперь покажем, что предложение [R(q);q] неразрешимо в S. Так, если предложение [R(q);q] предполагается выводимым, тогда оно оказывается истинным, то есть, в соответствии со сказанным выше, q будет принадлежать K, то есть, в соответствии с (*), будет выполнено ¬Bew[R(q);q], что противоречит нашему предположению. С другой стороны, если предположить выводимым отрицание [R(q);q], то будет иметь место ¬qK, то есть Bew[R(q);q] будет истинным. Следовательно, [R(q);q] вместе со своим отрицанием будет выводимо, что снова невозможно.

Связь с парадоксами

В стандартной интерпретации[~ 3] гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс[18].

Следует отметить, что выражаемое формулой A утверждение не содержит порочного круга, поскольку изначально утверждается только, что некоторая конкретная формула, явную запись которой получить несложно (хоть и громоздко), недоказуема. «Только впоследствии (и, так сказать, по воле случая) оказывается, что эта формула в точности та, которой выражено само это утверждение»[18].

Вторая теорема Гёделя

В формальной арифметике S можно построить такую формулу, которая в стандартной интерпретации[~ 3] является истинной в том и только в том случае, когда теория S непротиворечива. Для этой формулы справедливо утверждение второй теоремы Гёделя:

Если формальная арифметика S непротиворечива, то в ней невыводима формула, содержательно утверждающая непротиворечивость S.

Иными словами, непротиворечивость формальной арифметики не может быть доказана средствами этой теории. Однако, могут существовать доказательства непротиворечивости формальной арифметики, использующие средства, невыразимые в ней.

Набросок доказательства

Сначала строится формула Con, содержательно выражающая невозможность вывода в теории S какой-либо формулы вместе с её отрицанием. Тогда утверждение первой теоремы Гёделя выражается формулой ConG, где G — Гёделева неразрешимая формула. Все рассуждения для доказательства первой теоремы могут быть выражены и проведены средствами S, то есть в S выводима формула ConG. Отсюда, если в S выводима Con, то в ней выводима и G. Однако, согласно первой теореме Гёделя, если S непротиворечива, то G в ней невыводима. Следовательно, если S непротиворечива, то в ней невыводима и формула Con.

Исторические сведения

23 октября 1930 года результаты Гёделя были представлены Венской академии наук Хансом Ханом. Основная статья была получена для публикации 17 ноября 1930 года и опубликована в начале 1931 года[19].

Примечания

  1. Иногда упоминается как вторая теорема Гёделя «о доказательствах непротиворечивости»[1], «о неполноте»[2][3][4], «о неполноте арифметики»[5].
  2. 1 2 Формальная система, содержащая неразрешимую, то есть невыводимую и неопровержимую, формулу, называется неполной.
  3. 1 2 3 4 Интерпретация формул теории S называется стандартной, если её областью является множество неотрицательных целых чисел, символ 0 интерпретируется числом 0, функциональные буквы ', +, • интерпретируются прибавлением единицы, сложением и умножением соответственно, предикатная буква = интерпретируется отношением тождества.
  4. Гёдель использовал систему Principia Mathematica Уайтхеда и Рассела с оговоркой, что рассуждения применимы к широкому классу формальных систем
  5. Подобное сопоставление формул и натуральных чисел называется арифметизацией математики и было осуществлено Гёделем впервые. Эта идея впоследствии стала ключом к решению многих важных задач математической логики. См. Гёделева нумерация
  6. "Bew" сокр. от нем. "Beweisbar" - доказуемый, выводимый

Источники

  1. Клини 1957 с.513
  2. чл.-корр. РАН Лев Дмитриевич Беклемишев в «Введении в математическую логику»
  3. Толковый словарь по вычислительным системам - Page 205
  4. Доклады Академии наук СССР, Volume 262 - Page 799 (1982)
  5. Известия Академии наук СССР, Volume 50 - Page 1140 (1986)
  6. 1 2 Клини 1957 с.187
  7. Мендельсон 1971 с.165
  8. Это рассуждение заимствовано из Мендельсон 1971 с.160
  9. См., например, Клини 1957 с.188
  10. Мендельсон 1971 с.162
  11. Мендельсон 1971 с.162-163
  12. Мендельсон 1971 с.176
  13. Jones J. P., Undecidable diophantine equations
  14. Martin Davis, Diophantine Equations & Computation
  15. Martin Davis, The Incompleteness Theorem
  16. К. Подниекс, Теорема Геделя в диофантовой форме
  17. Gödel, Kurt On Formally Undecidable Propositions of the Principia Mathematica and Related Systems. I. — 1931. в книге Davis, Martin (ed.) The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable Problems And Computable Functions. — New York: Raven Press, 1965. — С. 6-8.
  18. 1 2 Гёдель 1931
  19. Heijenoort 1967 p.592

Литература

  • Клини Стефен Коул Введение в метаматематику. — М.: ИЛ, 1957. — 526 с.
  • Клини Стефен Коул Математическая логика. — М.: «Мир», 1973. — 480 с.
  • Мендельсон Эллиот Введение в математическую логику. — М.: «Наука», 1971. — 320 с.
  • Davis, Martin (ed.) The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable Problems And Computable Functions. — New York: Raven Press, 1965. — 440 p.
  • Heijenoort, Jean van (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. — Cambridge, Massachusetts: Harvard University Press, 1967. — 660 p.
  • Теорема Гёделя о неполноте. — М.: Наука, 1982. — 110 с. — (Популярные лекции по математике).
  • Академик «Доказательность в математике», программа А. Гордона от 16 июня 2003 года
  • А. Б. Сосинский Теорема Геделя // летняя школа «Современная математика». — Дубна, 2006.
  • П. Дж. Коэн Об основаниях теории множеств // Успехи математических наук. — 1974. — Т. 29. — № 5(179). — С. 169–176.
  • М. Кордонский Конец истины. — ISBN 5-946448-001-04
  • Теорема Гёделя о неполноте и четыре дороги, ведущие к ней // летняя школа «Современная математика». — Дубна, 2007.

См. также

Теоремы Гёделя о неполноте.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06