Light-industry-up.ru

Экосистема промышленности

Цикл де Брейна

14-10-2023

Последовательность де Брёйна[1] — последовательность , элементы которой принадлежат заданному конечному множеству (обычно рассматривают множество ), и все подпоследовательности заданной длины , различны.

Часто рассматриваются периодические последовательности с периодом , содержащие различных подпоследовательностей  — то есть такие периодические последовательности, в которых любой отрезок длины является последовательностью де Брёйна с теми же параметрами и .

Циклы де Брёйна названы по имени голландского математика Николаса де Брёйна, который рассматривал их в 1946 году[2], хотя они изучались и ранее[3].

Содержание

Свойства

Очевидно, что длина (период) такого цикла не может превосходить числа всех различных векторов длины с элементами из ; несложно доказать, что эта оценка достигается. Циклы этой максимально возможной длины обычно называют циклами де Брёйна (впрочем, иногда этот термин применяют и к циклам меньшей длины).

При существуют такие циклы де Брёйна с длиной, на единицу меньшей максимума, которые выражаются линейными рекуррентными соотношениями порядка : так, при соотношение порождает последовательности с периодом 7, например 0010111001011100… (цикл де Брёйна 0010111). На основе таких последовательностей построен, в частности, циклический избыточный код CRC32 (EDB88320).


Примеры

Примеры циклов де Брёйна для с периодом 2, 4, 8, 16:

  • 01 (содержит подпоследовательности 0 и 1)
  • 0011 (содержит подпоследовательности 00, 01, 11, 10)
  • 00010111 (000, 001, 010, 101, 011, 111, 110, 100)
  • 0000100110101111


Количество циклов де Брёйна

Количество циклов де Брёйна с параметрами и есть (частный случай теоремы де Брёйна — Эренфест (англ.) — Смита (англ.) — Тутте (англ.), BEST-теорема (англ.)).

Граф де Брёйна

Существует удобная интерпретация последовательностей и циклов де Брёйна, основанная на так называемом графе де Брёйна — ориентированном графе с вершинами, соответствующими различных наборов длины с элементами из , в котором из вершины в вершину ребро ведёт в том и только том случае, когда (); при этом самому ребру можно сопоставить набор длины : . Для такого графа не проходящие дважды через одно и то же ребро эйлеровы пути (эйлеровы циклы) соответствуют последовательности (циклу) де Брёйна с параметрами и , а не проходящие дважды через одну и ту же вершину гамильтоновы пути (гамильтоновы циклы) — последовательности (циклу) де Брёйна с параметрами и .

Примечания

  1. Встречаются также написания «де Бройна» и «де Брюина».
  2. de Bruijn N. G. A combinatorial problem // Koninklijke Nederlandse Akademie v. Wetenschappen. 1946. — v. 49. — pp. 758—764.
  3. Flye Sainte-Marie C. Question 48 // L’intermédiaire math. — 1894. — v. 1. — pp. 107—110.


Цикл де Брейна.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06