Light-industry-up.ru

Экосистема промышленности

KCipher-2

19-10-2023

Перейти к: навигация, поиск
KCipher-2 (K2 Stream Cipher)
Создатель:

KDDI R&D Laboratories, Inc.

Опубликован:

2007

Размер ключа:

128 бит

Тип:

Потоковый шифр

KCipher-2 (обновленная версия K2 Stream Cipher) — высокопроизводительный симметричный потоковый шифр (генератор потокового ключа), описанный в IETF RFC 7008[1]. Шифр использует 2 независимых входных параметра, 128-битовый ключ и 128-битовый инициализирующий вектор. Использование данного алгоритма KCipher-2 позволяет повысить уровень защищенности в ряде сервисов, таких как мультимедийные сервисы и услуги широкополосной связи.[1][2]

С тех пор как алгоритм шифра был опубликован в 2007 году, его безопасность и эффективность были тщательно оценены посредством академических и промышленных исследований. В 2012 году KCipher-2 был включен в международный стандарт потоковых шифров [2]

KCipher-2 может быть эффективно реализован в программном обеспечении для быстрого шифрования и расшифровки, благодаря своей несложной конструкции. Используются только 4 простые операции: исключающее "ИЛИ", сложение, сдвиг и таблицы поиска. Если алгоритм реализован в оборудовании, то внутренние вычисления могут быть распараллелены для достижения большей эффективности. Более того, так как внутреннее представление исчисляется всего лишь сотнями бит, KCipher-2 подходит для условий с ограниченными ресурсами.[1]

Основные характеристики

  • Скорости свыше 5 Гб/с были достигнуты на ПК. KCipher-2 может расшифровать фильм размером в 4,7 ГБ за 8 секунд, в то время как американскому стандарту AES потребовалось бы 1,5 минуты.
  • Скорости свыше 380 Мб/с достигнуты на смартфонах, оборудованных ОС Android. Расшифровка 400 видео файлов (размером 100 КБ каждый) происходит приблизительно за 1 секунду, что в 7-10 раз быстрее AES.
  • Уровень загруженности центрального процессора в 0,5% был достигнут при расшифровки видео, эквивалентного 1seg, на мобильном телефоне при воспроизведении в режиме реального времени, что являлось невозможным при существующих методах.
  • Алгоритм конфигурации не зависит от архитектуру центрального процессора. Он может обеспечить достаточную производительность в различных средах.[2]

Обоснование выбора модели

Основные потоковые шифры используют несколько независимых регистров сдвига с линейной обратной связью (РСЛОС) совместно с нелинейными функциями для генерации потокового ключа. Некоторые потоковые шифры используют общую нелинейную функцию для неравномерного тактирования одного или более РСЛОС. Описаны разнообразные управляющие тактами потоковые шифры и атаки на них.[3]

Механизм контроля тактов потоковых шифров обычно либо контролирует тактирование РСЛОС, либо прореживает или сужает вывод. Управление тактами, которое прореживает или сужает вывод ухудшает производительность потокового шифра, потому что некоторые выходные биты отбрасываются. Если применить сжатие к потоковому шифру с пословной обработкой, то производительность заметно ухудшится. Бит-ориентированный механизм тактового контроля также малоэффективен для улучшения РСЛОС. С другой стороны, динамическая обратная связь для РСЛОС является эффективным методом улучшения безопасности потоковых шифров.

KCipher-2 — это потоковый шифр, который оперирует словами и имеет действенную динамическую обратную связь для неравномерного тактирования. Основная идея модели — скорректировать операцию смешения во время обновления состояния. Полиномы с обратной связью для РСЛОС с пословной обработкой описываются коэффициентами; умножение входного слова на коэффициент означает смешение слов. Типичным примером является РСЛОС шифра SNOW2.0[3]. В общем случае полином с обратной связью — примитивный полином. Создатели применяют неравномерное тактирование для смешивающей операции, и модификация вызывает лишь небольшое ухудшение скорости шифрования и расшифровки. Другими словами, по крайней мере один РСОС неравномерно тактируется, чтобы динамически модифицировать функцию обратной связи для контроллера с динамической обратной связью, который получает выходные данные от других РСОС. Например функция с обратной связью определенная как , где (0,1) выбираются контроллером с динамической обратной связью. РСОС, контролируемый таким контроллером, называется регистром сдвига с динамической обратной связью (РСДОС). Механизм управления динамической обратной связью улучшает безопасность потокового шифра, потому что заменяет детерминированные линейные повторы некоторых регистров на вероятностные. Это эффективно защищает от ряда атак. Главное, KCipher-2 достигает не только высокой производительности подобно потоковым шифрам, основанным на РСЛОС, но и высокой защищенности.

Скорость генерации потокового ключа KCipher-2 составляет 4.97 циклов/байт в серии Pentium 4. Таким образом, данный шифр составляет конкуренцию другим потоковым шифрам из списка CRYPTREC. К тому же, KCipher-2 разрабатывался с учетом двух атак на SNOW2.0, алгебраической и дифференциальной, и имеет к ним бо́льшую устойчивость. Фактически, до сих пор не обнаружено атак на KCipher-2, меньших операций. В итоге KCipher-2 достигает высшей защищенности чем существующие потоковые шифры.[3]

Продукты и системы KCipher-2

Корпорация KDDI R & D Laboratories произвела пакет программ для разработки приложений (SDK) для KCipher-2. Данный шифровальный алгоритм используется в следующих системах/приложениях:

  • Система мобильной связи государственного учреждения (2000 лицензий)
  • Локационная система управления государственного учреждения (5000 лицензий)
  • ПО для рабочих групп на базе Интернет-технологий (1000 лицензий)
  • Мультимедийный проигрыватель для потребительских приложений (около миллиона пользователей)[3]

Версии шифра

Дата Версия История изменений
Январь 2007 K2 Ver.1.0[6] Первая публикация на международной конференции.
Июль 2007 K2 Ver.2.0[7] Шаг загрузки ключа в процессе инициализации был изменен, чтобы более эффективно распространять ключ и инициализирующий вектор во внутреннее состояние.
2008 KCipher-2 Ver.2.0 Было изменено только имя шифра с "K2" на "KCipher-2".[3]

Литература

  • Впервые опубликован: Kiyomoto, S., Tanaka, T., and Sakurai, K., "A Word-Oriented Stream Cipher Using Clock Control", In SASC 2007 Workshop Record, pp.260-274, January, 2007
  • Kiyomoto, S., Tanaka, T., and Sakurai, K., "K2: A Stream Cipher Algorithm Using Dynamic Feedback Control", In Proc. of SECRYPT 2007, pp.204-213, July, 2007
  • Kiyomoto, S., Tanaka, T., and Sakurai, K., "K2 Stream Cipher", Communications in Computer and Information Science, E-business and Telecommunications, 4th International Conference, ICETE 2007, Barcelona, Spain, July 28-31, 2007, Revised Selected Papers, pp. 214-226
  • "Stream Cipher KCipher-2" (February 1, 2010), Specification of cipher in the e-Government Recommended Ciphers List
  • Matt Henricksen, Wun She Yap, Chee Hoo Yian, Shinsaku Kiyomoto, and Toshiaki Tanaka, "Side-Channel Analysis of the K2 Stream Cipher", ACISP 2010 Proceedings of the 15th Australasian conference on Information security and privacy, pp. 53-73
  • Andrey Bogdanov, Bart Preneel, and Vincent Rijmen, "Security Evaluation of the K2 Stream Cipher", Version 1.1 — 7 March 2011
  • Priemuth-Schmid, D., "Attacks on Simplified Versions of K2", Proc. SIIS 2011, LNCS 7053, pp. 117-127.
  • Request for Comments: 7008, "A Description of the KCipher-2 Encryption Algorithm", August 2013
  • Описание шифра на сайте разработчика

Примечания

  1. ↑ A Description of the KCipher-2 Encryption Algorithm. tools.ietf.org. Проверено 13 ноября 2016.
  2. ↑ Product Outline|KCipher-2 | KDDI Research. Проверено 15 ноября 2016.
  3. ↑ CRYPTREC | Specifications of e-Government Recommended Ciphers. www.cryptrec.go.jp. Проверено 15 ноября 2016.

KCipher-2.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06