Light-industry-up.ru

Экосистема промышленности

Гармонический ряд

14-09-2023

В математике гармонический ряд представляет собой сумму, составленную из бесконечного количества членов, обратных последовательным числам натурального ряда[1]:

.

Ряд назван гармоническим, так как складывается из «гармоник»: -я гармоника, извлекаемая из скрипичной струны, — это основной тон, производимый струной длиной от длины исходной струны.[2]

Содержание

Сумма первых n членов ряда

Отдельные члены ряда стремятся к нулю, но его сумма расходится. n-ной частичной суммой sn гармонического ряда называется n-ное гармоническое число:

Некоторые значения частичных сумм

Формула Эйлера

В 1740 году Л. Эйлером было получено асимптотическое выражение для суммы первых n членов ряда[1]:

,

где  — постоянная Эйлера — Маскерони, а  — натуральный логарифм.

При значение , следовательно, для больших n:

 — формула Эйлера для суммы первых n членов гармонического ряда.
Пример использования формулы Эйлера
, (%)
10 2,93 2,88 1,7
25 3,82 3,80 0,5

Более точная асимптотическая формула для частичной суммы гармонического ряда:

, где  — числа Бернулли.

Данный ряд расходится, однако ошибка вычислений по нему никогда не превышает половины первого отброшенного члена.

Теоретико-числовые свойства частичных сумм

Сходимость ряда

при

Гармонический ряд расходится очень медленно (для того, чтобы частичная сумма превысила 100, необходимо около 1043 элементов ряда).

Расходимость гармонического ряда можно продемонстрировать, сравнив его с телескопическим рядом:

,

частичная сумма которого, очевидно, равна:

.

Доказательство Орема

Доказательство расходимости можно построить, группируя слагаемые следующим образом:


\begin{align}
\sum_{k=1}^\infty \frac{1}{k} & {} =
1 + \left[\frac{1}{2}\right] + \left[\frac{1}{3} + \frac{1}{4}\right] + \left[\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right] + \left[\frac{1}{9}+\cdots\right] +\cdots \\
& {} > 1 + \left[\frac{1}{2}\right] + \left[\frac{1}{4} + \frac{1}{4}\right] 
+ \left[\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right] + \left[\frac{1}{16}+\cdots\right] +\cdots \\
& {} = 1 + \ \frac{1}{2}\ \ \ + \quad \frac{1}{2} \ \quad + \ \qquad\quad\frac{1}{2}\qquad\ \quad \ + \quad \ \ \frac{1}{2} \ \quad + \ \cdots.
\end{align}

Последний ряд, очевидно, расходится. Это доказательство принадлежит средневековому учёному Николаю Орему (ок. 1350).

Альтернативное доказательство расходимости

Предположим, что гармонический ряд сходится к сумме :

Тогда, перегруппируя дроби, получим:

Вынесем из второй скобки :

Заменим вторую скобку на :

Перенесём в левую часть:

Подставим обратно вместо сумму ряда:

Это равенство, очевидно, неверно, так как единица больше одной второй, одна треть больше одной четвёртой, и так далее. Таким образом, наше предположение о сходимости ряда ошибочно, и ряд расходится.

не равно 0, т.к. каждая из скобок положительная.

Это означает, что S - есть бесконечность и наши операции по добавлению или вычитанию ее из обоих сторон равенства недопустимы.

Частичные суммы

n-ая частичная сумма гармонического ряда,

называется n-ым гармоническим числом.

Разница между n-м гармоническим числом и натуральным логарифмом n сходится к постоянной Эйлера-Маскерони.

Разница между различными гармоническими числами никогда не равна целому числу и никакое гармоническое число, кроме , не является целым[3].

Связанные ряды

Ряд Дирихле

Обобщенным гармоническим рядом (или рядом Дирихле) называют ряд[1][4]

.

Обобщенный гармонический ряд расходится при α≤1 и сходится при α>1[4].

Сумма обобщённого гармонического ряда порядка α равна значению дзета-функции Римана:

Для чётных это значение явно выражается через число пи, например, , а уже для α=3 его значение аналитически неизвестно.

Знакопеременный ряд

Первые 14 частичных сумм знакочередующегося гармонического ряда (чёрные отрезки), показывающие сходимость к натуральному логарифму от 2 (красная линия).

В отличие от гармонического ряда, у которого все слагаемые берутся со знаком «+», ряд


\sum_{n = 1}^\infty \frac{(-1)^{n + 1}}{n} \;=\; 1 \,-\, \frac{1}{2} \,+\, \frac{1}{3} \,-\, \frac{1}{4} \,+\, \frac{1}{5} \,-\, \cdots

сходится по признаку Лейбница. Поэтому говорят, что такой ряд обладает условной сходимостью. Его сумма равна натуральному логарифму 2:

Эта формула — частный случай ряда Меркатора (англ.), ряда Тейлора для натурального логарифма.

Похожий ряд может быть получен из ряда Тейлора для арктангенса:


\sum_{n = 0}^\infty \frac{(-1)^{n}}{2n+1} \;\;=\;\; 1 \,-\, \frac{1}{3} \,+\, \frac{1}{5} \,-\, \frac{1}{7} \,+\, \cdots \;\;=\;\; \frac{\pi}{4}.

Это известно как ряд Лейбница.

Случайный гармонический ряд

Бирон Шмуланд из Университета Альберты рассмотрел[5][6] свойства случайного ряда

где sn независимые, одинаково распределённые случайные величины, которые принимают значения +1 и −1 с одинаковой вероятностью ½. Показано, что этот ряд сходится с вероятностью 1, и сумма ряда есть случайная величина с интересными свойствами. Например, функция плотности вероятности, вычисленная в точках +2 или −2 имеет значение 0,124 999 999 999 999 999 999 999 999 999 999 999 999 999 7642 …, отличаясь от на менее чем 10−42. Статья Шмуланда объясняет, почему эта величина близка, но не равна 1/8.

«Истончённый» гармонический ряд

Ряд Кемпнера (англ.)

Если рассмотреть гармонический ряд, в котором оставлены только слагаемые, знаменатели которых не содержат цифры 9, то окажется, что оставшаяся сумма сходится к числу <80[7]. Более того, доказано, что если оставить слагаемые, не содержащие любой заранее выбранной последовательности цифр, то полученный ряд будет сходиться. Однако из этого будет ошибочно заключать о сходимости исходного гармонического ряда, т.к. с ростом разрядов в числе n, все меньше слагаемых берется для суммы "истонченного" ряда. Т.е. в конечном счете мы отбрасываем подавляющее большинство членов образующих сумму гармонического ряда, чтобы не превзойти ограничивающую сверху геометрическую прогрессию.

Примечания

  1. ↑ Математический энциклопедический словарь. / Гл. ред. Ю. В. Прохоров; Ред. кол.: С. И. Адян, Н. С. Бахвалов, В. И. Битюцков и др. — М.: Сов. энциклопедия, 1988. — 847 с. стр. 139.
  2. Р.Грэхэм, Д.Кнут, О.Паташник Конкретная математика. Основание информатики — М.: Мир; БИНОМ. Лаборатория знаний, 2006. — стр. 47. — С. 703 ISBN 503003773X
  3. Harmonic Number — from Wolfram MathWorld
  4. 1 2 Справочник по математике для инженеров и учащихся втузов. Бронштейн И. Н., Семендяев К. А. М.: Наука. Главная редакция физико-математической литературы, 1981, 718 с.
  5. «Random Harmonic Series», American Mathematical Monthly 110, 407—416, May 2003
  6. Schmuland’s preprint of Random Harmonic Series
  7. Nick’s Mathematical Puzzles: Solution 72

Гармонический ряд.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06