Light-industry-up.ru

Экосистема промышленности

Интегральная сумма

19-04-2023

Геометрический смысл интеграла Римана

Интегра́л Ри́мана — одно из важнейших понятий математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.

Содержание

Неформальное геометрическое описание

Риман формализовал понятие интеграла, разработанное Ньютоном и Лейбницем, как площади подграфика (фигуры, заключенной между графиком функции и осью абсцисс). Для этого он рассмотрел фигуры, состоящие из нескольких вертикальных прямоугольников и получающиеся при разбиении отрезка (см. рисунок). Если при «размельчении» разбиения существует предел, к которому сходятся площади таких фигур (интегральные суммы), этот предел называется интегралом Римана функции на отрезке.

Определения

Через интегральные суммы

Пусть на отрезке определена вещественнозначная функция .

Рассмотрим разбиение отрезка — конечное множество попарно различных точек отрезка. Это разбиение делит отрезок на n отрезков . Длина наибольшего из отрезков δR =, называется шагом разбиения, где -длина элементарного отрезка.

Отметим на каждом отрезке разбиения по точке . Интегральной суммой называется выражение .

Если при стремлении шага разбиения к нулю интегральные суммы стремятся к одному и тому же числу, независимо от выбора , то это число называется интегралом функции на отрезке , т.е. .

В этом случае, сама функция называется интегрируемой (по Риману) на ; в противном случае является неинтегрируемой (по Риману) на отрезке .

Через суммы Дарбу

Свойства

  1. Невырожденность:
  2. Положительность: Если интегрируемая функция f неотрицательна, то её интеграл по отрезку также неотрицателен.
  3. Линейность: Если функции и интегрируемы, и , то функция тоже интегрируема, и .
  4. Непрерывность: Если интегрируемые функции равномерно сходятся на отрезке к функции , то интегрируема, и . (Последняя формула может быть получена уже как формальное следствие свойств 1-3 и интегрируемости предельной функции.)
  5. Аддитивность при разбиениях отрезка Пусть . Функция интегрируема на отрезке , тогда и только тогда, когда она интегрируема на каждом из отрезков и , при этом .
  6. Непрерывная на отрезке функция интегрируема по Риману (следствие свойств 1-5). Разрывные функции могут быть интегрируемы, но могут и не быть; примером функции, не интегрируемой по Риману, является всюду разрывная функция Дирихле. Критерий Лебега интегрируемости функции по Риману: функция интегрируема по Риману на отрезке , если и только если на этом отрезке она ограничена, и множество точек, где она разрывна, имеет нулевую меру (то есть может быть покрыто счётным семейством интервалов со сколь угодно малой суммарной длиной).
  7. Если функция является первообразной непрерывной функции , то интеграл функции на отрезке может быть вычислен по формуле Ньютона-Лейбница: он равен . (Это - общее свойство любых интегралов, удовлетворяющих свойствам 1-5, а не только интеграла Римана.) Непрерывная на отрезке функция всегда имеет первообразную, и каждая первообразная имеет вид: , где C - произвольная константа.

История

Такое определение интеграла дано Коши[1], но применялось только для непрерывных функций.

Риман в 1854 году[2] дал это же определение без предположения непрерывности.

См. также

Литература

Ссылки

  1. Cauchy A. L., Sur la mécanique céleste et sur un nouveau calcul appelé calcul des limites, Turin 1831
  2. Riemann В., «Göttinger Akad. Abhandl.», 1868, Bd 13
  • Таблицы неопределенных и определенных интегралов — EqWorld: Мир математических уравнений.
  • Строгое определение интеграла Римана

Интегральная сумма.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06