Light-industry-up.ru

Экосистема промышленности

C4-фотосинтез

13-04-2023

Перейти к: навигация, поиск

C4-фотосинтез или цикл Хэтча-Слэка-Карпилова — путь связывания углерода, характерный для высших растений, первым продуктом которого является четырёхуглеродная щавелевоуксусная кислота, а не трёхуглеродная 3-фосфоглицериновая кислота, как у большинства растений с обычным C3-фотосинтезом.

По своей сути C4-фотосинтез представляет собой модификацию обычного C3-фотосинтеза и появился в процессе эволюции значительно позже последнего. В цикле Хэтча-Слэка растения осуществляют первичную фиксацию углерода в клетках мезофилла через карбоксилирования фосфоенолпирувата (ФЕП) при участии фермента фосфоенолпируваткарбоксилазы (ФЕП-карбоксилаза). Образовавшийся в результате реакции оксалоацетат превращается в малат или аспартат и в таком виде транспортируется в клетки обкладки проводящего пучка, где в результате декарбоксилирования высвобождается CO2, поступающий в восстановительный пентозофосфатный цикл[1]. В цикле Кальвина у C4-растений как и у C3-растений CO2 превращается в трёхатомный сахар, который идёт на синтез сахарозы. Транспорт CO2 из клеток мезофилла в клетки обкладки в виде промежуточных продуктов фиксации позволяет значительно повысить его концентрацию в месте локализации Рубиско и таким образом значительно повысить её эффективность, избежав побочной реакции с кислородом, и, как следствие, полностью избавится от фотодыхания.

Благодаря более эффективному способу фиксации CO2 отпадает необходимость держать устьица всё время открытыми, а значит снижаются потери воды в ходе транспирации. По этой причине C4-растения способны расти в засушливых местообитаниях, при высоких температурах, в условиях засоления, недостатка азота и CO2. Тем не менее дополнительные шаги по фиксации углерода в C4-пути требует дополнительных затрат энергии в форме АТФ. Если принять, что в цикле Кальвина у C4-растений, так же как и у C3-растений для фиксации одной молекулы CO2 используются 3 молекулы АТФ и 2 молекулы НАДФН, то для регенерации акцептора углерода в цикле Хэтча-Слэка, то есть превращения пирувата в ФЕП, требуются дополнительно 2 молекулы АТФ. В итоге на одну молекулу CO2 в C4-пути расходуется 5 молекул АТФ и 2 молекулы НАДФН[2]. По этой причине C4-растениям для оптимального роста требуются более высокий уровень инсоляции.

Анатомия листа

Поперечный срез листа кукурузы, широко распространённого C4-растения. Красным цветом показаны клетки проводящего пучка, фиолетовым — клетки обкладки, а бирюзовым — клетки мезофилла.

Для C4-растений характерна особая структура листа, так называемая кранц-анатомия (нем. Kranz — корона, венец). Впервые такой тип строения листа был описан в 1884 году немецким ботаником Готлибом Габерландтом[3]. Проводящие пучки у таких растений окружены двумя слоями зелёных клеток ассимиляционной паренхимы. Внешний слой образуют клетки мезофилла, не дифференцированый на губчатую и палисадную паренхиму, а внутренний — клетки обкладки сосудистого пучка. Клетки обкладки связаны с клетками мезофилла множеством плазмодесм, благодаря чему между ними возможен активный обмен метаболитами. Особенностью строения листа C4-растений является наличие не более 2-3 слоёв клеток мезофилла, что позволяет легко обмениваться продуктами фотосинтеза через плазмодесмы. Клетки мезофилла и клетки обкладки проводящего пучка отличаются структурно и функционально. Клетки мезофилла мелкие, расположены рыхло, хлоропласты в них всегда имеют граны и они редко содержат крахмал. В этих клетках и располагается ФЕП-карбоксилаза, которая присоединяет CO2 к фосфоенолпирувату с образованием оксалоацетата. Клетки обкладки более крупные, с утолщённой, часто суберинизированной, клеточной стенкой, плотно прилегают к сосудам листа, хлоропласты в них могут не иметь гран и часто содержат зёрна крахмала. Здесь локализуется фермент Рубиско и протекает обычный цикл Кальвина[4].

Для некоторых C4-растений также характерен диморфизм хлоропластов, когда у хлоропластов клеток мезофилла есть многочисленные граны, а в клетках обкладки граны рудементарны и практически полностью отсутствуют[5]. Тем не менее, такой диморфизм не является необходимым для C4-фотосинтеза и встречается только среди растений с определённым его биохимическим типом[6].

Не у всех видов C4-растений есть субериновый слой, но все они стремятся предотвратить диффузию CO2 из клеток обкладки, поэтому положение хлоропластов в этих клетках становится особенно важным. У видов с субериновым слоем хлоропласты расположены центробежно, то есть на максимальном удалении от проводящего пучка и ближе к мезофиллу. У видов без суберинового слоя хлоропласты расположены центростремительно, впритык к клеточной стенке, максимально приближенной к проводящему пучку и в удалении от мезофилла. Такое распределение хлоропластов удлиняет путь диффузии CO2 и снижает утечку в клетки мезофилла[7].

Биохимия

Обобщённая схема C4-метаболизма: A — мезофилл; B — обкладка пучка; ЦК — цикл Кальвина

У C3-растений темновые реакции фотосинтеза начинаются с фиксации CO2 ферментом Рубиско на акцепторе рибулозо-1,5-бисфосфате с образованием двух молекул 3-фосфоглицерата. Однако из-за двойной, карбоксилазой и оксигеназной активности Рубиско, часть субстрата для фиксации CO2 взаимодействует с кислородом и окисляется, что приводит к потере субстрата и энергии, а также влечёт за собой дополнительные затраты по утилизации образовавшегося двухуглеродного соединения, 2-фосфогликолата. Сумма этих процессов носит название фотодыхание и вносит существенный вклад в снижение общей эффективности фотосинтеза.

Что бы преодолеть ограничения, связанные с побочной реакцией Рубиско в условиях низкого содержания в современной атмосфере CO2 и высокого O2, C4-растения выработали эффективный механизм концентрирования CO2 в месте локализации Рубиско, создавая благоприятные условия для работы этого фермента. Вместо прямой фиксации Рубиско в цикле Кальвина, CO2 ассимилируется в виде 4-х углеродной органической кислоты в клетках мезофилла, которая затем транспортируется в клетки обкладки сосудистых пучков, где декарбоксилируется, высвобождая CO2. Анатомической предпосылкой нагнетания CO2 является большее число клеток мезофилла (примерно 5—7 на одну клетку обкладки). Таким образом, CO2, предварительно зафиксированный в пяти клетках, попадает в одну[8]. В клетках обкладки CO2 поступает в обычный цикл Кальвина, где вторично фиксируется Рубиско и используется для синтеза углеводов. Благодаря постоянному градиенту метаболитов, а также непроницаемой для CO2 стенке клеток обкладки, концентрация CO2 в сайте карбоксилирования Рубиско даже при закрытых устьицах возрастает в 14 раз по сравнению с равновесной концентрацией CO2 в воде (с 5 мкмоль/л до 70 мкмоль/л соответственно)[9]. При таких высоких концентрациях CO2 в сайте карбоксилирования оксигеназная реакция в значительной степени подавлена, возрастает эффективность фотосинтеза, снижаются потери энергии на фотодыхание.

Первичную фиксацию CO2 у C4-растений осуществляет фермент фосфоенолпируваткарбоксилаза или ФЕП-карбоксилаза, расположенная в клетках мезофилла. В отличие от Рубиско, она фиксирует углекислый газ в форме гидрокарбонат-иона HCO3-, а не CO2. Поскольку в качестве субстрата используется заряженная молекула, то полностью исключается побочная реакция с незаряженной молекулой на подобии O2, которая к тому же отличается от гидрокарбоната по пространственному строению. Эффективность механизма предварительной фиксации CO2 при помощи ФЕП-карбоксилазы заключается не в высоком сродстве фермента к субстрату (Km(HCO3-) = 0,2-0,4 мМ для ФЕП-карбоксилазы[8] против Km(CO2) = 10-15 мкМ для Рубиско[10]), а в том, что в цитозоле при нормальной температуре и рН 8 отношение HCO3-:CO2 составляет приблизительно 50:1. Таким образом, ФЕП-карбоксилаза, в отличие от Рубиско, может присоединять доминирующую в этой равновесной реакции форму углекислоты и результативно проводить фиксацию CO2, даже если при полузакрытых устьицах концентрация растворенного в воде CO2 упадет ниже уровня, приемлемого для Рубиско[11]. Образование HCO3- из CO2 происходит с участием цинк-содержащего фермента карбоангидразы, которая также локализована в цитозоле клеток мезофилла и ускоряет установление равновесия между двумя формами углекислоты:

ФЕП-карбоксилаза катализирует необратимую конденсацию молекул ФЕП и HCO3- с образованием оксалоацетата. ФЕП-карбоксилазаимеет имеет очень высокое сродство к ФЕП. Оксалоацетат преобразуется в малат или же в аспартат и в таком виде транспортируется в клетки обкладки, где снова становится малатом и подвергается окислительному декарбоксилированию:

 HCO3  Фн

ФЕПК
Фосфоенолпируват (ФЕП) Оксалоацетат

В результате окислительного декарбоксилирования из малата образуется CO2 и пируват, который в той или иной форме возвращается в клетки мезофилла, где снова превращается в ФЕП при помощи расположенного в хлоропластах фермента пируватортофосфатдикиназы[en]. Катализируемая ферментом реакция довольно необычна, название «дикиназа» обозначает фермент, который катализирует двукратное фосфорилирование. На первой, обратимой стадии реакции один фосфатный остаток передаётся с АТФ на неорганический фосфат с образованием пирофосфата, а второй (Фβ) присоединяется к пирувату. Локализованная в строме хлоропластов пирофосфатаза[en] мгновенно гидролизует образовавшийся пирофосфат, что делает реакцию необратимой[12]. Таким образом происходит регенерация акцептора углекислого газа и замыкание цикла.

    АТФ+Фн  АМФ+ФФн

ПФДК
Пируват Фосфоенолпируват

Эффективный механизм углекислотного концентрирования позволяет C4-растениям создать диффузный ток, что бы обеспечить достаточное поступление углекислого газа даже при увеличенном сопротивлении устьиц. Именно этот эффект позволяет тратить почти в два раза меньше воды на фиксацию одной молекулы CO2, чем C3-растениям, ведь с уменьшением ширины устьичной щели пропорционально падают и потери воды[9].

Три типа C4-фотосинтеза

В соответствии с типом C4-кислоты, которая служит переносчиком углекислого газа в клетки обкладки (малат или аспартат), C3-продуктом который возвращается в клетки мезофилла для регенерации (пируват или аланин), а также с характером декарбоксилирующих реакций в клетках обкладки выделяют три варианта С4-пути фотосинтеза[13]:

  • НАДФ+-малатдегидрогеназный тип: Малат подвергается окислительному декарбоксилированию в хлоропластах под действием НАДФ-зависимой декарбоксилирующей малатдегидрогеназы (НАДФ-зависимый малик-энзим) с образованием молекулы НАДФH и CO2.
  • НАД+-малатдегидрогеназный тип: Малат декарбоксилируется в митохондриях при помощи НАД-зависимой декарбоксилирующей малатдегидрогеназы (НАД-зависимый малик-энзим) с образованием одной молекулы НАДН. Выделившийся диоксид углерода диффундирует в хлоропласты.
  • ФЕП-карбоксикиназный тип: Малат декарбоксилируется в митохондриях по НАД-малатдегидрогеназному типу, но в дополнение происходит прямое декарбоксилирование оксалоацетата в цитоплазме ФЕП-карбоксикиназой с затратой одной молекулы АТФ и образованием ФЕП.

НАДФ-малатдегидрогеназный тип (НАДФ-МДГ)

НАДФ-МДГ тип C4-фотосинтеза. ФЕП = фосфоенолпируват; OA = оксалоацетат; М = малат; Пир = пируват; ФЕПК = ФЕП-карбоксилаза; ПФДК = пируватфосфатдикиназа; НАДФ-МДГ = НАДФ-зависимая малатдегидрогеназа; НАДФ-МЭ = НАДФ-зависимый малик-энзим.

НАДФ-малатдегидрогеназный тип (НАДФ-МДГ)[8] или НАДФ-маликэнзимный тип (НАДФ-МЭ)[14] исторически был первым исследованным биохимическим типом C4-фотосинтеза. По этому пути осуществляют фотосинтез такие важные сельскохозяйственные культуры, как кукуруза, сорго, росичка и сахарный тростник[15]. В качестве транспортных продуктов используются малат и пируват.

Оксалоацетат, который образуется в результате карбоксилирования ФЕП, с помощью специфичного переносчика транспортируется в хлоропласты, где восстанавливается НАДФ-малатдегидрогеназой до малата. Образовавшийся малат выносится в цитозоль и диффундирует из клеток мезофилла в клетки обкладки через плазмодесмы. Малик-энзим, который локализован в хлоропластах клеток обкладки, катализирует преобразование малата в пируват с выделением СO2, который фиксируется Рубиско. Образовавшийся пируват с участием специфичного переносчика экспортируется из хлоропластов клеток обкладки и диффундирует через плазмодесмы в клетки мезофилла, где он с помощью другого переносчика входит в хлоропласты, где фермент пируватфосфатдикиназа снова превращает его в ФЕП[8].

Поскольку хлоропласты клеток обкладки, в отличие от хлоропластов клеток мезофилла, не содержат карбоангидразы, диффузия СO2 в строме клеток обкладки происходит медленнее, чем в клетках мезофилла. Субериновый слой между клетками обкладки и мезофилла у некоторых растений, вероятно, также затрудняет утечку СO2 через клеточные стенки, так что остается только возможность утечки через плазмодесмы. Долю СO2, который был сконцентрирован в клетках обкладки, но вследствие утечки диффундировал обратно в клетки мезофилла, оценивают как 10-30 % для разных видов[16].

Для растений обладающих этим типом C4-фотосинтеза характерно наличие диморфизма хлоропластов. Хлоропласты клеток мезофилла имеют много гран, в то время как хлоропласты клеток обкладки содержат преимущественно стромальные ламеллы и малое количество гранальных стопок с низкой активностью фотосистемы II. Существует градация в количестве гран хлоропластов клеток обкладки, начиная с рудиментарных гран у кукурузы и росички и вплоть до полного их отсутствия у сорго и сахарного тростника[17]. Агранальные хлоропласты клеток обкладки осуществляют циклическое фосфорилирование при участии фотосистемы I и синтезируют только АТФ. Все восстановительные эквиваленты, необходимые для цикла Кальвина обеспечивают клетки мезофилла за счет нециклического электронного транспорта. Окисление в клетках обкладки малата обеспечивает не более трети необходимых для работы цикла Кальвина НАДФН. Другая часть необходимого НАДФН вместе с АТФ поставляется из хлоропластов клеток мезофилла в хлоропласта клетки обкладки с помощью триозофосфат-3-фосфоглицератного челночного механизма, через триозофосфатный переносчик внутренней мембраны соответствующих хлоропластов[18].

НАД-малатдегидрогеназный тип (НАД-МДГ)

НАД-МДГ тип C4-фотосинтеза. М = Малат; ФЕП = Фосфоенолпируват OA = оксалоацетат; Пир = пируват; Асп = аспартат; Ала = аланин; Глу = глутамат; α-КГ = α-кетоглутарат; КА = карбоангидраза; ФЕПК = ФЕП-карбоксилаза; ПФДК = пируватфосфатдикиназа; НАД-МДГ = НАД-зависимая малатдегидрогеназа; НАД-MЭ = НАД-зависимый малик-энзим; АлаAT = аланинаминотрансфераза; АспAT = аспартатаминотрансфераза;

НАД-малатдегидрогеназный тип (НАД-МДГ)[8] или НАД-маликэнзимный тип (НАД-МЭ)[14] обнаружен у большинства видов, включая просо, амарант, портулак[13], иван-чай и марь[19]. Хлоропласты как клеток мезофилла, так и клеток обкладки имеют граны и активную фотосистему II[20]. Клетки обкладки содержат множество крупных митохондрий с хорошо развитыми кристами[21]. В качестве транспортных продуктов используются аспартат и аланин.

В этом случае оксалоацетат, который образуется в реакции ФЕП-карбоксилазы, превращается в аспартат путём переаминирования, которое катализируется глутамат-аспартатаминотрансферазой. Поскольку концентрация глутамата в клетке велика, он удобен для поддержания диффузионного тока между клетками мезофилла и обкладки. В результате трансаминирования концентрация аспартата становится в 5 раз выше концентрации оксалоацетата, что создаёт сильный диффузионный ток. После диффузии в клетки обкладки аспартат транспортируется в митохондрии. Митохондриальная изоферментная форма глутамат-аспартатаминотрансферазы катализирует превращение аспартата в оксалоацетат, который затем восстанавливается НАД-малатдегидрогеназой до малата. Малат декарбоксилируется НАД-малик-энзимом с образованием пирувата, а НАД+, образовавшийся в реакции восстановления оксалоацетата, вновь восстанавливается до НАДН. Образовавшийся в реакции СO2 диффундирует в хлоропласты, где ассимилируется с участием Рубиско. Пируват выходит из митохондрий и в цитозоле превращается в аланин с участием аланин-глутаматаминотрансферазы. Поскольку эта реакция равновесная, а концентрация аланина гораздо выше, чем пирувата, возникает интенсивный диффузионный ток аланина в клетки мезофилла. В клетках мезофилла аланин превращается в пируват с участием изофермента аминотрансферазы, которая упоминалась выше. Пируват транспортируется в хлоропласта, где превращается в ФЕП с участием пируватфосфатдикиназы так же, как в случае с НАДФ-МДГ типом[20].

ФЕП-карбоксикиназный тип (ФЕПКК)

ФЕПКК тип C4-фотосинтеза. М = Малат; ФЕП = Фосфоенолпируват; OA = оксалоацетат; Пир = пируват; Асп = аспартат; Ала = аланин; Глу = глутамат; α-КГ = α-Кетоглутарат; КА = карбоангидраза; ФЕПК = ФЕП-карбоксилаза; ПФДК = пируватфосфатдикиназа; НАДФ-МДГ = НАДФ-зависимая малатдегидрогеназа; НАД-MЭ = НАД-зависимый малик-энзим (декарбоксилирующая малатдегидрогеназа); АлаAT = аланинаминотрансфераза; АспAT = аспартатаминотрансфераза; ФЕПКК = фосфоенолпируваткарбоксикиназа;

ФЕП-карбоксикиназный тип (ФЕПКК или ФЕП-КК)[8] был обнаружен у нескольких быстро растущих тропических злаков, которые используются в качестве кормовых культур. Этот путь фотосинтеза используют часть представителей рода просо (гвинейская трава[en]), хлорис гайанская[en][15] и баклажан[19]. Хлоропласты как клеток мезофилла, так и клеток обкладки имеют граны и активную фотосистему II[20]. В качестве транспортных продуктов используются аспартат, аланин, малат и фосфоенолпируват.

Как и в С4-метаболизме НАД-МДГ типа, оксалоацетат превращается в аспартат в клетках мезофилла. Аспартат диффундирует в клетки обкладки, где с участием аминотрансферазы, локализованной в цитозоле, происходит регенерация оксалоацетата. В цитозоле под действием фермента ФЕП-карбоксикиназы оксалоацетат превращается в ФЕП с затратой АТФ. Выделившийся в реакции СO2 диффундирует в хлоропласты, а ФЕП диффундирует обратно в клетки мезофилла. У растений этого типа затраты АТФ на накачивание СO2 в клетки обкладки связаны исключительно с потреблением АТФ ФЕП-карбоксикиназой. Митохондрии обеспечивают эту реакцию необходимым количеством АТФ, окисляя малат при участии НАД-малик-энзима. Источником малата, как и в случае НАДФ-малатдегидрогеназного типа, являются клетки мезофилла. Таким образом, в метаболизме С4-ФЕП-карбоксикиназного типа лишь небольшая часть СO2 высвобождается в митохондриях, а большая часть — в цитозоле[22].

Регуляция

C4-фотосинтез регулируется по трём основным ферментам, каждый из которых активируется светом, так что С4-путь активен исключительно в светлое время суток.

ФЕП-карбоксилаза регулируется двумя путями: через фосфорилирование и аллостерически. Основными аллостерическими ингибиторами ФЕП-карбоксилазы являются карбоновые кислоты такие как малат и аспартат[23][24]. Поскольку малат образуется на следующем шаге САМ и С4 циклов, сразу после того как ФЕП-карбоксилаза катализирует конденсацию СО2 и ФЕП в оксалоацетат, то образуется обратная связь. И аспартат, и оксалоацетат легко превращаются друг в друга по механизму трансаминирования; таким образом, высокие концентрации аспартата путём обратной связи ингибируют ФЕП-карбоксилазу.

Основные аллостерические активаторы ФЕП-карбоксилазы у растений — это триозофосфаты[25] и фруктозо-1,6-бисфосфат[26]. Обе молекулы являются индикаторами активного гликолиза и сигнализируют о необходимости производства оксалоацетата, чтобы усилить поток вещества через цикл трикарбоновых кислот. Кроме того, увеличение гликолиза означает усиленное снабжение ФЕП и, следовательно, больше акцептора для фиксации СО2 и транспорта его в цикл Кальвина.

Когда лист находится в темноте, активность этого фермента низкая. В этом случае сродство фермента к субстрату, ФЕП, очень низкое; процесс также ингибируется низкими концентрациями малата. Поэтому в темное время суток фермент в листе практически неактивен. При освещении листа неизвестным путём активируется киназа ФЕП-карбоксилазы, которая фосфорилирует гидроксильную группу серинового остатка в белке ФЕП-карбоксилазы. Фермент вновь может быть инактивирован в случае удаления фосфатной группы специфической фосфатазой. Активированный (фосфорилированный) фермент также ингибируется малатом, но в этом случае для достижения эффекта необходимы более высокие концентрации малата. Как киназа так и фосфатаза регулируются на уровне транскрипции. Существует также мнение, что малат обеспечивает обратную связь в этом процессе, снижая уровень экспресси киназы и повышая экспрессию фосфатазы[24].

Регуляция пируватфосфатдкиназы

Пируватфосфатдикиназа (ПФДК) также является светозависимым ферментом. Она инактивируется в темноте за счет фосфорилирования по остатку треонина. Эту реакцию осуществляет необычный бифункциональный ПФДК регулирующий протеин (ПФДК-РП или ПДРП). Он одновременно обладает киназной и фосфатазной активностью. Фосфорилирование довольно необычно, поскольку в качестве донора фосфатной группы используется предпочтительно АДФ, а не АТФ. Необычна и реакция дефосфорилирования, вместо молекулы воды, ПФРП переносит отщепляемую фосфатную группу на свободный неорганический фосфат (Фн) с образованием пирофосфата (ФФн). Активность ПДРП зависит от уровня АДФ в строме хлоропластов. АДФ является субстратом для киназной активности и одновременно сильным конкурентным ингибитором фосфатазной. В темноте уровень АДФ значительно повышается, в результате чего подавляется фосфатазная активность. На свету, за счёт фотофосфорилирования, концентрация АДФ резко сокращается, не остаётся субстрата для киназной реакции, а фосфатазная перестаёт подавляется. В результате ПДРП отщепляет фосфат от пируватфосфатдикиназы и активирует её[27].

НАДФ-малатдепадрогеназа активируется светом за счет работы ферредоксин-тиоредоксиновой системы. В ходе световых реакций фотосинтеза, энергия света питает транспорт электронов от воды к ферредоксину. Фермент ферредоксин-тиоредоксинредуктаза использует восстановленный ферредоксин для восстановления дисульфидной связи тиоредоксина из дисульфида до дитиола. Восстановленный тиоредоксин восстанавливает цистеин-цистеиновую дисульфидную связь в НАДФ-малатдепадрогеназе, что переводит фермент активную форму[22].

Особые формы C4-фотосинтеза

C4-фотосинтез без кранц-анатомии

Схема одноклеточного C4-фотосинтеза растения Suaeda aralocaspica.

Хотя большинство C4-растений обладает кранц-анатомией, есть несколько видов осуществляющих C4-цикл без разделения на клетки обкладки и мезофилл. Эти четыре растения относятся к подсемейству маревые: Suaeda aralocaspica[en], Bienertia cycloptera, Bienertia sinuspersici и Bienertia kavirense. Они произрастают в пустынных, засолённых районах среднего востока: B. sinuspersici в разных странах Персидского залива, B. cycloptera в Турции, Афганистане и Иране, B. kavirense в иранской соляной пустыне (Деште-Кевир), а С. aralocaspica возле соляных заводов в Центральной Азии. Для них характерен уникальный С4-механизм нагнетания CO2 в рамках одной клетки[28][29][30][31]. Все вышеперечисленные растения относятся к НАД-МДГ биохимическому типу[32].

Хотя цитологическое строение в двух родах различается, основной принцип в обоих заключается в использовании больших вакуолей для разделения клетки на два отсека. У S. aralocaspica имеются очень длинные клетки палисадной паренхимы, разделённые на два отсека большой вакуолью, которая занимает почти всё пространство клетки. Паренхима располагается в один слой и более плотно упакована с внешней стороны листа, но более рыхло с внутренней. В ближнем к эпидермеу листа (дистальном) регионе располагаются хлоропласты с низким содержанием гран и без Рубиско, здесь происходит синтез ФЕП из при помощи фермент пируватфосфатдикиназы. Во внутреннем (проксимальном) участке расположены обычные гранальные хлоропласты и митохондрии, здесь есть Рубиско и действует цикл Кальвина[32].

Представители рода Bienertia[en] имеют другое строение. Паренхима листа располагается в два-три слоя. Большая часть клетки заполнена вакуолями, и разбита на тонкую цитозольную полоску на периферии и необычный центральный отсек с большим количеством хлоропластов в середине. Здесь наблюдается некий аналог кранц-анатомии, на периферии располагаются крупные хлоропласты с уменьшенным количеством гран и неполным набором ферментов цикла Кальвина, где происходит регенерация ФЕП, а в центре расположено скопление в двое меньших хлоропластов с нормальными гранами и активной Рубиско, где протекает цикл Кальвина. Вместе с этими хлоропластами в центре расположены митохондрии и пероксисомы[32].

В обоих случаях за распределение двух типов хлоропластов по клетке отвечает актиновый и микротрубочковый цитоскелет. Также при одноклеточном C4-фотосинтезе не происходит обособления ФЕП-карбоксилазы, она равномерно располагается по всей клетке. В связи с этим возникает вопрос о возможном механизме ингибирования её в месте работы Рубиско, что бы избежать повторной фиксации высвобожденного CO2[32].

В качестве другого примера C4-фотосинтеза без кранц-анатомии можно привести морскую зелёную макроводоросль Udotea flabellum[33] и одноклеточную диатомею Thalassiosira weissflogii[en][34].

Факультативный C4-фотосинтез

Примечания

  1. Ермаков, 2005, с. 196.
  2. Ермаков, 2005, с. 198.
  3. Медведев, 2013, с. 57.
  4. Страсбургер, 2008, с. 140-142.
  5. Страсбургер, 2008, с. 140.
  6. Donat-Peter Häder: Photosynthese, 1. Auflage, Thieme Verlag, Stuttgart 1999, ISBN 978-3-13-115021-9, S. 205.
  7. Centrifugal versus centripetal chloroplasts. Plants in Action. Australian and New Zealand societies of plant sciences. Проверено 22 августа 2016.
  8. 1 2 3 4 5 6 Хелдт, 2011, с. 188.
  9. 1 2 Хелдт, 2011, с. 185.
  10. Хелдт, 2011, с. 147.
  11. Страсбургер, 2008, с. 144.
  12. PMID 4303480.
  13. 1 2 Ермаков, 2005, с. 197.
  14. 1 2 Кобак, 1988, с. 20.
  15. 1 2 Страсбургер, 2008, с. 146.
  16. Хелдт, 2011, с. 190.
  17. ISBN 978-0520050181.
  18. Donat-Peter Häder: Photosynthese, 1. Auflage, Thieme Verlag, Stuttgart 1999, ISBN 978-3-13-115021-9, S. 207.
  19. 1 2 Медведев, 2013, с. 59.
  20. ↑ PMID 22404472; doi:10.1146/annurev-arplant-042811-105511.
  21. Gerald E. Edwards, Elena V. Voznesenskaya: C4 Photosynthesis: Kranz forms and single-cell C4 in terrestrial plants. In: Agepati S. Raghavendra, Rowan F. Sage (Hrsg.): C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Dordrecht 2011, ISBN 978-90-481-9406-3 (Reihe Advances in photosynthesis and respiration Band 32), S. 29–61.
  22. 1 2 Хелдт, 2011, с. 194.
  23. 0003-9861. PMID 3947097.
  24. ↑ 1360-1385. PMID 10664617.
  25. PMID 12781768.
  26. Regulation of pyruvate, orthophosphate dikinase by ADP-/Pi-dependent reversible phosphorylation in C3 and C4 plants». Plant Physiology and Biochemistry 41 (6-7): 523–532. 10.1055/s-2000-9462.
  27. PMID 12207654.
  28. 10.1080/11263504.2012.662921.
  29. ↑ 10.1073/pnas.88.7.2883.
  30. PMID 11069177.

Литература

  • П. Зитте, и др. на основе учебника Э. Страсбургера. Ботаника / Под ред. В. В. Чуба. — 35-е изд. — М.: Академия, 2008. — Т. 2. Физиология растений. — 495 с.
  • Медведев С. С. Физиология растений. — СПб.: БХВ-Петербург, 2013. — 335 с.
  • Физиология растений / Под ред. И. П. Ермакова. — М.: Академия, 2005. — 634 с.
  • Хелдт Г. В. Биохимия растений. — М.: БИНОМ. Лаборатория знаний, 2011. — 471 с.
  • К.И.Кобак. Биотические компоненты углеродного цикла / Под ред. М.И. Будыко. — Ленинград: Гидрометеоиздат, 1988. — 246 с. — ISBN 5-286-00055-Х.

C4-фотосинтез.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06