Light-industry-up.ru

Экосистема промышленности

Красно-чёрное дерево

21-10-2023

Красно-чёрное дерево
Тип дерево поиска
Изобретено в 1972 году
Изобретено Rudolf Bayer
Временная сложность
в О-символике
В среднем В худшем случае
Расход памяти O(n) O(n)
Поиск O(log n) O(log n)
Вставка O(log n) O(log n)
Удаление O(log n) O(log n)

Красно-чёрное дерево (англ. Red-Black-Tree, RB-Tree) — это одно из самобалансирующихся двоичных деревьев поиска, гарантирующих логарифмический рост высоты дерева от числа узлов и быстро выполняющее основные операции дерева поиска: добавление, удаление и поиск узла. Сбалансированность достигается за счёт введения дополнительного атрибута узла дерева — «цвета». Этот атрибут может принимать одно из двух возможных значений — «чёрный» или «красный».

Изобретателем красно-чёрного дерева считают немца Рудольфа Байера. Название «красно-чёрное дерево» структура данных получила в статье Л. Гимпаса и Р. Седжвика (1978). В журнале были доступны две краски, красная и чёрная,[источник не указан 479 дней] и дополнительный бит, «прикреплявшийся» к каждому из узлов, обозначался цветом.

Содержание

Терминология

Красно-черное дерево является особым видом двоичного дерева, используемым в компьютерной науке для организации сравнимых данных, таких как фрагменты текста или числа. Листовые узлы красно-черных деревьев не содержат данных. Такие листья не нуждаются в явном выделении памяти — нулевой указатель на потомка может фактически означать, что этот потомок — листовой узел, но в некоторых случаях работы с красно-черными деревьями использование явных листовых узлов может послужить упрощением алгоритма.

Свойства

Пример красно-черного дерева

Красно-черное дерево — двоичное дерево поиска, в котором каждый узел имеет атрибут цвет, принимающий значения красный или черный. В дополнение к обычным требованиям, налагаемым на двоичные деревья поиска, к красно-черным деревьям применяются следующие требования:

  1. Узел либо красный, либо черный.
  2. Корень — черный. (В других определениях это правило иногда опускается. Это правило слабо влияет на анализ, так как корень всегда может быть изменен с красного на черный, но не обязательно наоборот).
  3. Все листья — черные.
  4. Оба потомка каждого красного узла — черные.
  5. Всякий простой путь от данного узла до любого листового узла, являющегося его потомком, содержит одинаковое число черных узлов.

Эти ограничения реализуют критическое свойство красно-черных деревьев: путь от корня до самого дальнего листа не более чем в два раза длиннее пути от корня до ближайшего листа. Результатом является то, что дерево примерно сбалансировано. Так как такие операции как вставка, удаление и поиск значений требуют в худшем случае времени, пропорционального длине дерева, эта теоретическая верхняя граница высоты позволяет красно-черным деревьям быть более эффективными в худшем случае, чем обычные двоичные деревья поиска.

Чтобы понять, почему это гарантируется, достаточно рассмотреть эффект свойства 4 и 5 вместе. Пусть для красно-черного дерева T число черных узлов в свойстве 5 равно B. Тогда кратчайший возможный путь от корня дерева T до любого листового узла содержит B черных узлов. Более длинный возможный путь может быть построен путем включения красных узлов. Однако, свойство 4 не позволяет вставить несколько красных узлов подряд. Поэтому самый длинный возможный путь состоит из 2B узлов, попеременно красных и черных. Любой максимальный путь имеет одинаковое число черных узлов (по свойству 5), следовательно, не существует пути, более чем вдвое длинного, чем любой другой путь.

Во многих реализациях структуры дерева возможно, чтобы узел имел только одного потомка и листовой узел содержал данные. В этих предположениях реализовать красно-черное дерево возможно, но изменятся несколько свойств и алгоритм усложнится. По этой причине данная статья использует «фиктивные листовые узлы», которые не содержат данных и просто служат для указания, где дерево заканчивается. Эти узлы часто опускаются при графическом изображении, в результате дерево выглядит противоречиво с вышеизложенными принципами, но на самом деле противоречия нет. Следствием этого является то, что все внутренние (не являющиеся листовыми) узлы имеют два потомка, хотя один из них может быть нулевым листом. Свойство 5 гарантирует, что красный узел обязан иметь в качестве потомков либо два черных нулевых листа, либо два черных внутренних узла. Для черного узла с одним потомком нулевым листовым узлом и другим потомком, не являющимся таковым, свойства 3, 4 и 5 гарантируют, что последний должен быть красным узлом с двумя черными нулевыми листьями в качестве потомков.

Иногда красно-черное дерево трактуют как бинарное дерево поиска, у которого вместо узлов в красный и черный цвета раскрашены ребра, но это не имеет какого-либо значения. Цвет узла в терминах данной статьи соответствует цвету ребра, соединяющего узел со своим предком, за исключением того, что корневой узел всегда черный (свойство 2), в то время как соответствующее ребро не существует.

Аналогия с B-деревом порядка 2

То же самое красно-черное дерево, что и в примере выше, представленное как B-дерево.

Красно-черное дерево схоже по структуре с B-деревом порядка 2, в котором каждый узел может содержать от 1 до 3 значений и, соответственно, от 2 до 4 указателей на потомков. В таком В-дереве каждый узел будет содержать только одно значение, соответствующее значению черного узла красно-черного дерева с необязательным значениями до и/или после него в том же узле, оба из которых соответствуют эквивалентным красным узлам красно-черного дерева.

Один из способов увидеть эту эквивалентность — «поднять» красные узлы в графическом представлении красно-черного дерева так, чтобы они оказались на одном уровне по горизонтали со своими предками черными узлами, образуя страницу. В В-дереве, или в модифицированном графическом представлении красно-черного дерева, у всех листовых узлов глубина одинаковая.

Этот тип В-дерева является более общим, чем красно-черное дерево, хотя, как видно, из одного такого В-дерева порядка 4 могут быть получены несколько красно-черных деревьев. Если страница В-дерева содержит только одно значение, данный узел черный и имеет двух потомков. Если страница содержит три значения, то центральный узел является черным, а каждый его сосед — красным. Однако, если страница содержит два значения, любой узел может стать черным в красно-черном дереве (и тогда второй будет красным).

Работа с красно-чёрными деревьями

Красно-чёрные деревья являются одними из наиболее активно используемых на практике самобалансирующихся деревьев поиска. В частности, контейнер map в большинстве реализаций библиотеки STL языка C++[1], класс TreeMap языка Java[2], так же, как и многие другие реализации ассоциативного массива в различных библиотеках, основаны на красно-чёрных деревьях.

Популярность красно-чёрных деревьев связана с тем, что на них часто достигается подходящий баланс между степенью сбалансированности и сложностью поддержки сбалансированности. В частности, при сравнении с идеально сбалансированными деревьями часто обнаруживается, что последние имеют слишком жесткое условие сбалансированности и при выполнении операций удаления из дерева много времени тратится на поддержание необходимой сбалансированности.

Операции

Операции чтения для красно-черного дерева ничем не отличаются от оных для бинарного дерева поиска, потому что любое красно-черное дерево является особым случаем обычного бинарного дерева поиска. Однако, непосредственный результат вставки или удаления может привести к нарушению свойств красно-черных деревьев. Восстановление свойств требует небольшого (O(log n) или O(1)) числа операций смены цветов (которая на практике очень быстрая) и не более чем трех поворотов дерева (для вставки — не более двух). Хотя вставка и удаление сложны, их трудоемкость остается O(log n).

Вставка

Вставка начинается с добавления узла, точно так же, как и в обычном бинарном дереве поиска, и окрашивания его в красный цвет. Но если в бинарном дереве поиска мы всегда добавляем лист, в красно-черном дереве листья не содержат данных, поэтому мы добавляем красный внутренний узел с двумя черными потомками на место черного листа.

Что происходит дальше зависит от цвета близлежащих узлов. Термин дядя будем использовать для обозначения брата родительского узла, как и в фамильном дереве. Заметим, что:

  • Свойство 3 (Все листья черные) выполняется всегда.
  • Свойство 4 (Оба потомка любого красного узла — черные) может нарушиться только при добавлении красного узла, при перекрашивании черного узла в красный или при повороте.
  • Свойство 5 (Все пути от любого узла до листовых узлов содержат одинаковое число черных узлов) может нарушиться только при добавлении черного узла, перекрашивании красного узла в черный (или наоборот), или при повороте.
Примечание: Буквой N будем обозначать текущий узел (окрашенный красным). Сначала это новый узел, который вставляется, но эта процедура может рекурсивно применена к другим узлам (смотрите случай 3). P будем обозначать предка N, через G обозначим дедушку N, а U будем обозначать дядю N. Отметим, что в некоторых случаях роли узлов могут меняться, но, в любом случае, каждое обозначение будет представлять тот же узел, что и в начале. Любой цвет, изображенный на рисунке, либо предполагается в данном случае, либо получается из других соображений.

Каждый случай рассматривается с примерами кода на языке C. Дядя и дедушка текущего узла могут быть найдены с помощью функций:

struct node *
grandparent(struct node *n)
{
        if ((n != NULL) && (n->parent != NULL))
                return n->parent->parent;
        else
                return NULL;
}
 
struct node *
uncle(struct node *n)
{
        struct node *g = grandparent(n);
        if (g == NULL)
                return NULL; // No grandparent means no uncle
        if (n->parent == g->left)
                return g->right;
        else
                return g->left;
}

Случай 1: Текущий узел N в корне дерева. В этом случае, он перекрашивается в черный цвет, чтобы оставить верным Свойство 2 (Корень — черный). Так как это действие добавляет один черный узел в каждый путь, Свойство 5 (Все пути от любого данного узла до листовых узлов содержат одинаковое число черных узлов) не нарушается.

void
insert_case1(struct node *n)
{
        if (n->parent == NULL)
                n->color = BLACK;
        else
                insert_case2(n);
}

Случай 2: Предок P текущего узла черный, то есть Свойство 4 (Оба потомка каждого красного узла — черные) не нарушается. В этом случае дерево действительно. Свойство 5 (Все пути от любого данного узла до листовых узлов содержат одинаковое число черных узлов) не нарушается, потому что текущий узел N имеет двух черных листовых потомков, но так как N является красным, пути до каждого из этих потомков содержит такое же число черных узлов, что и путь до черного листа, который был заменен текущим узлом, который был черный, так что свойство остается верным.

void
insert_case2(struct node *n)
{
        if (n->parent->color == BLACK)
                return; /* Tree is still valid */
        else
                insert_case3(n);
}
Примечание: В следующих случаях предполагается, что у N есть дедушка G, так как его родитель P является красным, а если бы он был корнем, то был бы окрашен в черный цвет. Таким образом, N также имеет дядю U, хотя он может быть листовым узлом в случаях 4 и 5.

Случай 3: Если и родитель P и дядя U — красные, то они оба могут быть перекрашены в черный и дедушка G станет красным (для сохранения свойства 5 (Все пути от любого данного узла до листовых узлов содержат одинаковое число черных узлов)). Теперь у текущего красного узла N черный родитель. Так как любой путь через родителя или дядю должен проходить через дедушку, число черных узлов в этих путях не изменится. Однако, дедушка G теперь может нарушить свойства 2 (Корень — черный) или 4 (Оба потомка каждого красного узла — черные) (свойство 4 может быть нарушено, так как родитель G может быть красным). Чтобы это исправить, вся процедура рекурсивно выполняется на G из случая 1.

void
insert_case3(struct node *n)
{
        struct node *u = uncle(n), *g;
 
        if ((u != NULL) && (u->color == RED)) {
                n->parent->color = BLACK;
                u->color = BLACK;
                g = grandparent(n);
                g->color = RED;
                insert_case1(g);
        } else {
                insert_case4(n);
        }
}
Примечание: В оставшихся случаях предполагается, что родитель P является левым потомком своего предка. Если это не так, необходимо поменять лево и право. Примеры кода позаботятся об этом.

Случай 4: Родитель P является красным, но дядя U — черный. Также, текущий узел N — правый потомок P, а P в свою очередь — левый потомок своего предка G. В этом случае может быть произведен поворот дерева, который меняет роли текущего узла N и его предка P. Тогда, бывший родительский узел P рассматривается, используя случай 5 (перенумеровывающий N и P), потому что Свойство 4 (Оба потомка любого красного узла — черные) все еще нарушено. Вращение приводит к тому, что некоторые пути (в поддереве, обозначенном «1» на схеме) проходят через узел N, чего не было до этого. Это также приводит к тому, что некоторые пути (в поддереве, обозначенном «3») не проходят через узел P. Однако, оба из этих узлов являются красными, так что Свойство 5 (Все пути от любого данного узла до листовых узлов содержат одинаковое число черных узлов) не нарушается при вращении.

void
insert_case4(struct node *n)
{
        struct node *g = grandparent(n);
 
        if ((n == n->parent->right) && (n->parent == g->left)) {
                rotate_left(n->parent);
                n = n->left;
        } else if ((n == n->parent->left) && (n->parent == g->right)) {
                rotate_right(n->parent);
                n = n->right;
        }
        insert_case5(n);
}

Случай 5: Родитель P является красным, но дядя U — черный, текущий узел N — левый потомок P и P — левый потомок G. В этом случае выполняется поворот дерева на G. В результате получается дерево, в котором бывший родитель P теперь является родителем и текущего узла N и бывшего дедушки G. Известно, что G — черный, так как его бывший потомок P не мог бы в противном случае быть красным (без нарушения Свойства 4). Тогда цвета P и G меняются и в результате дерево удовлетворяет Свойству 4 (Оба потомка любого красного узла — черные). Свойство 5 (Все пути от любого данного узла до листовых узлов содержат одинаковое число черных узлов) также остается верным, так как все пути, которые проходят через любой из этих трех узлов, ранее проходили через G, поэтому теперь они все проходят через P. В каждом случае, из этих трех узлов только один окрашен в черный.

void
insert_case5(struct node *n)
{
        struct node *g = grandparent(n);
 
        n->parent->color = BLACK;
        g->color = RED;
        if ((n == n->parent->left) && (n->parent == g->left)) {
                rotate_right(g);
        } else { /* (n == n->parent->right) and (n->parent == g->right) */
                rotate_left(g);
        }
}

Удаление

При удалении узла с двумя не листовыми потомками в обычном двоичном дереве поиска мы ищем либо наибольший элемент в его левом поддереве, либо наименьший элемент в его правом поддереве и перемещаем его значение в удаляемый узел. Затем, мы удаляем узел, из которого копировали значение.

Будем использовать обозначение M для удаляемого узла; через C обозначим потомка M, который также будем называть просто «его потомок». Если M имеет не листового потомка, возьмем его за C. В противном случае за C возьмем любой из листовых потомков.

Если M является красным узлом, заменим его своим потомком C, который по определению должен быть черным. (Это может произойти только тогда, когда M имеет двух листовых потомков, потому что если красный узел M имеет черного не листового потомка с одной стороны, а с другой стороны — листового, то число черных узлов на обеих сторонах будет различным, таким образом дерево станет недействительным красно-черным деревом из-за нарушения Свойства 5.) Все пути через удаляемый узел просто будут содержать на один красный узел меньше, предок и потомок удаляемого узла должны быть черными, так что Свойство 3 («Все листья — черные») и Свойство 4 («Оба потомка красного узла — черные») все еще сохраняется.

Другим простым является случай, когда M — черный и C — красный. Простое удаление черного узла нарушит Свойство 4 («Оба потомка красного узла — черные») и Свойство 5 («Всякий простой путь от данного узла до любого листового узла, содержит одинаковое число черных узлов»), но если мы перекрасим С в черный, оба эти свойства сохранятся.

Сложным является случай, когда и M и C — черные. (Это может произойти только тогда, когда удаляется черный узел, который имеет два листовых потомка, потому что если черный узел M имеет черного не листового потомка с одной стороны, а с другой — листового, то число черных узлов на обеих сторонах будет различным и дерево станет недействительным красно-черным деревом из-за нарушения Свойства 5.) Мы начнем с замены узла M своим потомком C. Будем называть этот потомок (в своем новом положении) N, а его «брата» (другого потомка его нового предка) — S. (До этого S был «братом» M.) На рисунках ниже мы также будем использовать обозначение P для нового предка N (старого предка M), SL для левого потомка S и SR для правого потомка S (S не может быть листовым узлом, так как если N по нашему предположению является черным, то поддерево P, которое содержит N, черной высоты два и поэтому другое поддерево P, которое содержит S должно быть также черной высоты два, что не может быть в случае, когда S — лист).

Примечание: В некоторых случаях мы меняем роли и обозначения узлов, но в каждом случае любое обозначение продолжает означать тот же узел, что и в начале случая. Любые цвета, изображенные на рисунке либо предполагаются случаем, либо получается из других предположений. Белый означает неизвестный цвет (либо красный, либо черный).

Будем искать «брата», используя эту функцию:

struct node *
sibling(struct node *n)
{
        if (n == n->parent->left)
                return n->parent->right;
        else
                return n->parent->left;
}
Примечание: Для того, чтобы дерево оставалось верно определенным, нам нужно, чтобы каждый лист оставался листом после всех преобразований (чтобы у него не было потомков). Если удаляемый нами узел — не листовой потомок N, легко видеть, что свойство выполняется. С другой стороны, если N — лист, то, как можно увидеть из рисунков или кода, свойство также выполняется.


void
delete_one_child(struct node *n)
{
        /*
         * Precondition: n has at most one non-null child.
         */
        struct node *child = is_leaf(n->right) ? n->left : n->right;
 
        replace_node(n, child);
        if (n->color == BLACK) {
                if (child->color == RED)
                        child->color = BLACK;
                else
                        delete_case1(child);
        }
        free(n);
}


Случай 1: N — новый корень. В этом случае, все сделано. Мы удалили один черный узел из каждого пути и новый корень является черным узлом, так что свойства сохранены.

void
delete_case1(struct node *n)
{
        if (n->parent != NULL)
                delete_case2(n);
}
Примечание: В случаях 2, 5, и 6 мы предполагаем, что N является левым потомком своего предка P. Если он — правый потомок, left и right нужно поменять местами во всех трех случаях. Опять-таки, примеры кода принимают это во внимание.

Случай 2: S — красный.

Сравнение с идеально сбалансированным АВЛ-деревом

Высота дерева

Пускай высота дерева h, минимальное количество листьев N. Тогда:

Следовательно, при том же количестве листьев красно-чёрное дерево может быть выше АВЛ-дерева, но не более чем в раз.[3]

Поиск

Поскольку красно-чёрное дерево, в худшем случае, выше, поиск в нём медленнее, но проигрыш по времени не превышает 39 %.

Вставка

Вставка требует до 2 поворотов в обоих видах деревьев. Однако из-за большей высоты красно-чёрного дерева вставка может занимать больше времени.

Удаление

Удаление из красно-черного дерева требует до 3 поворотов, в АВЛ-дереве оно может потребовать числа поворотов до глубины дерева (до корня). Поэтому удаление из красно-чёрного дерева быстрее, чем из АВЛ-дерева.

Память

АВЛ-дерево в каждом узле хранит высоту (целое число). Красно-чёрное дерево в каждом узле хранит цвет (1 бит). Таким образом, красно-чёрное дерево может быть экономичнее.

Однако, на практике в обоих типах деревьев используются целые числа, т.к. работа с битами требует дополнительных процессорных вычислений. Но тем не менее есть реализации красно-черного дерева, которые хранят значение цвета в бите. Пример - Boost Multiindex. Цель хранения цвета в бите - уменьшение потребления памяти красно-черным деревом (Ordered indices node compression). Бит цвета в такой реализации хранится не в отдельной переменной, а в одном из указателей узла дерева.

Доказательство асимптотических границ

Красно-черное дерево, которое содержит n внутренних узлов, имеет высоту .

Обозначения:

  • — высота поддерева с корнем в
  • — число черных узлов (не считая , если он черный) от до любого листа в поддереве (называемое черной высотой)

Лемма: Поддерево с корнем в узле имеет не менее внутренних узлов.

Доказательство леммы (индукцией по высоте):

Основание индукции: .

Если поддерево имеет нулевую высоту, то должен быть null, поэтому .

Итак:


~2^{bh(v)}-1 = 2^{0}-1 = 1-1 = 0


Индукционный шаг: пусть узел такой, что и поддерево имеет не менее внутренних узлов.
Покажем, что тогда , для которого , имеет не менее внутренних узлов.

Так как имеет , это внутренний узел. Как таковой он имеет два потомка, оба из которых имеют черную высоту , либо (зависит от того, является красным, или черным).
По индукционному предположению каждый потомок имеет не менее внутренних узлов, поэтому имеет не менее


~2^{bh(v') - 1} - 1 + 2^{bh(v') - 1} - 1 + 1 = 2^{bh(v')} - 1

внутренних узлов.

Используя эту лемму, мы можем показать, что дерево имеет логарифмическую высоту. Так как по крайней мере половина узлов в любом пути от корня до листа — черные (свойство 4 красно-черного дерева), черная высота корня не менее . По лемме имеем:


n \geq 2^{{h(\text{root}) \over 2}} - 1 \leftrightarrow \; \log_2{(n+1)} \geq {h(\text{root}) \over 2} \leftrightarrow \; h(\text{root}) \leq 2\log_2{(n+1)}.

Поэтому высота корня .

См. также

Ссылки

  • Визуализатор Красно-чёрного дерева
  • Томас Ниман Сортировка и поиск: Рецептурный справочник
  • Эффективная реализация Красно-Чёрных Деревьев (ENG)
  • Красно-чёрные деревья (теория и реализация)

Литература

Источники

  1. Dr Dobbs — STL’s Red-Black Trees
  2. Класс TreeMap
  3. в пределе для большого числа листьев



Красно-чёрное дерево.

© 2014–2023 light-industry-up.ru, Россия, Краснодар, ул. Листопадная 53, +7 (861) 501-67-06